1,120 research outputs found

    Deterministic walks in random networks: an application to thesaurus graphs

    Full text link
    In a landscape composed of N randomly distributed sites in Euclidean space, a walker (``tourist'') goes to the nearest one that has not been visited in the last \tau steps. This procedure leads to trajectories composed of a transient part and a final cyclic attractor of period p. The tourist walk presents universal aspects with respect to \tau and can be done in a wide range of networks that can be viewed as ordinal neighborhood graphs. As an example, we show that graphs defined by thesaurus dictionaries share some of the statistical properties of low dimensional (d=2) Euclidean graphs and are easily distinguished from random graphs. This approach furnishes complementary information to the usual clustering coefficient and mean minimum separation length.Comment: 12 pages, 5 figures, revised version submited to Physica A, corrected references to figure

    Trustworthy placements: Improving quality and resilience in collaborative attack detection

    Get PDF
    Abstract In distributed and collaborative attack detection systems decisions are made on the basis of the events reported by many sensors, e.g., Intrusion Detection Systems placed across various network locations. In some cases such events originate at locations over which we have little control, for example because they belong to an organisation that shares information with us. Blindly accepting such reports as real encompasses several risks, as sensors might be dishonest, unreliable or simply having been compromised. In these situations trust plays an important role in deciding whether alerts should be believed or not. In this work we present an approach to maximise the quality of the information gathered in such systems and the resilience against dishonest behaviours. We introduce the notion of trust diversity amongst sensors and argue that detection configurations with such a property perform much better in many respects. Using reputation as a proxy for trust, we introduce an adaptive scheme to dynamically reconfigure the network of detection sensors. Experiments confirm an overall increase both in detection quality and resilience against compromise and misbehaviour

    Trustworthy placements: Improving quality and resilience in collaborative attack detection

    Get PDF
    Abstract In distributed and collaborative attack detection systems decisions are made on the basis of the events reported by many sensors, e.g., Intrusion Detection Systems placed across various network locations. In some cases such events originate at locations over which we have little control, for example because they belong to an organisation that shares information with us. Blindly accepting such reports as real encompasses several risks, as sensors might be dishonest, unreliable or simply having been compromised. In these situations trust plays an important role in deciding whether alerts should be believed or not. In this work we present an approach to maximise the quality of the information gathered in such systems and the resilience against dishonest behaviours. We introduce the notion of trust diversity amongst sensors and argue that detection configurations with such a property perform much better in many respects. Using reputation as a proxy for trust, we introduce an adaptive scheme to dynamically reconfigure the network of detection sensors. Experiments confirm an overall increase both in detection quality and resilience against compromise and misbehaviour

    Ideal Gases in Time-Dependent Traps

    Full text link
    We investigate theoretically the properties of an ideal trapped gas in a time-dependent harmonic potential. Using a scaling formalism, we are able to present simple analytical results for two important classes of experiments: free expansion of the gas upon release of the trap; and the response of the gas to a harmonic modulation of the trapping potential is investigated. We present specific results relevant to current experiments on trapped Fermions.Comment: 5 pages, 3 eps figure

    High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia.

    Get PDF
    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a predictive biomarker of disease progression in many malignancies, including imatinib-treated chronic myeloid leukemia (CML). Although high CIP2A levels correlate with disease progression in CML, the underlying molecular mechanisms remain elusive. In a screen of diagnostic chronic phase samples from patients with high and low CIP2A protein levels, high CIP2A levels correlate with an antiapoptotic phenotype, characterized by downregulation of proapoptotic BCL-2 family members, including BIM, PUMA and HRK, and upregulation of the antiapoptotic protein BCL-XL. These results suggest that the poor prognosis of patients with high CIP2A levels is due to an antiapoptotic phenotype. Disrupting this antiapoptotic phenotype by inhibition of BCL-XL via RNA interference or A-1331852, a novel, potent and BCL-XL-selective inhibitor, resulted in extensive apoptosis either alone or in combination with imatinib, dasatinib or nilotinib, both in cell lines and in primary CD34(+) cells from patients with high levels of CIP2A. These results demonstrate that BCL-XL is the major antiapoptotic survival protein and may be a novel therapeutic target in CML

    Incoherent dynamics of vibrating single-molecule transistors

    Get PDF
    We study the tunneling conductance of nano-scale quantum ``shuttles'' in connection with a recent experiment (H. Park et al., Nature, 407, 57 (2000)) in which a vibrating C^60 molecule was apparently functioning as the island of a single electron transistor (SET). While our calculation starts from the same model of previous work (D. Boese and H. Schoeller, Europhys. Lett. 54, 66(2001)) we obtain quantitatively different dynamics. Calculated I-V curves exhibit most features present in experimental data with a physically reasonable parameter set, and point to a strong dependence of the oscillator's potential on the electrostatics of the island region. We propose that in a regime where the electric field due to the bias voltage itself affects island position, a "catastrophic" negative differential conductance (NDC) may be realized. This effect is directly attributable to the magnitude of overlap of final and initial quantum oscillator states, and as such represents experimental control over quantum transitions of the oscillator via the macroscopically controllable bias voltage.Comment: 6 pages, LaTex, 6 figure

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Hot Spots and Transition from d-Wave to Another Pairing Symmetry in the Electron-Doped Cuprate Superconductors

    Full text link
    We present a simple theoretical explanation for a transition from d-wave to another superconducting pairing observed in the electron-doped cuprates. The d_{x^2-y^2} pairing potential Delta, which has the maximal magnitude and opposite signs at the hot spots on the Fermi surface, becomes suppressed with the increase of electron doping, because the hot spots approach the Brillouin zone diagonals, where Delta vanishes. Then, the d_{x^2-y^2} pairing is replaced by either singlet s-wave or triplet p-wave pairing. We argue in favor of the latter and discuss experiments to uncover it.Comment: 6 pages, 4 figures, RevTeX 4. V.2: Extra figure and many references added. V.3: Minor update of references for the proof

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742
    corecore