
The University of Manchester Research

Boosting single thread performance in mobile processors
via reconfigurable acceleration
DOI:
10.1007/978-3-642-28365-9_10

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Ndu, G., & Garside, J. (2012). Boosting single thread performance in mobile processors via reconfigurable
acceleration. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics)|Lect. Notes Comput. Sci. (Vol. 7199, pp. 114-125). Springer Nature.
https://doi.org/10.1007/978-3-642-28365-9_10
Published in:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics)|Lect. Notes Comput. Sci.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:12. Nov. 2022

https://doi.org/10.1007/978-3-642-28365-9_10
https://www.research.manchester.ac.uk/portal/en/publications/boosting-single-thread-performance-in-mobile-processors-via-reconfigurable-acceleration(89443ce5-fee1-4247-873c-e64553f7e6ef).html
https://doi.org/10.1007/978-3-642-28365-9_10


Boosting Single Thread Performance in Mobile
Processors via Reconfigurable Acceleration

Geoffrey Ndu and Jim Garside

The APT Group
School of Computer Science,
The University of Manchester,

Oxford Road, Manchester.
United Kingdom

{g.ndu,jdg}@cs.man.ac.uk
http://apt.cs.man.ac.uk

Abstract. Mobile processors, a subclass of embedded processors, are increas-
ingly employing multicore designs to improve performance. This often requires
sacrificing resources in each CPU, degrading single thread performance which
is still important according to Amdahl’s law. The traditional technique for ef-
ficiently boosting serial performance in embedded processors, dedicated hard-
ware acceleration, is unsuitable for modern mobile processors because of the
heterogeneity and the diversity of applications they run. This paper proposes
‘general purpose’ accelerators, reconfigured on an application-by-application ba-
sis, as a means of increasing single thread performance. These accelerators are
placed within the datapath of CPUs and support dynamic compilation. This pa-
per presents the design of an architecture with such accelerators and evaluates the
cost/performance implications of the design.

Keywords: reconfigurable, dynamic compilation, multicore, accelerator, JIT

1 Introduction

Mobile processors, a subclass of embedded processors, are General Purpose Processors
(GPPs) designed primarily for small, fan-less, battery powered, mobile computing de-
vices such as smart-phones. They are characterised by high performance, low energy
consumption, small area and low cost. Mobile processors are increasingly moving to
multicore designs to improve performance.

Multicore processors, multiple Central Processing Units (CPUs) on a die, improve
performance by handling more work in parallel. Increasing the number of CPUs often
requires sacrificing resources in each CPU which degrades single thread performance.
Single thread performance is still important as some key applications have limited
Thread-level Parallelism (TLP). Further, according to Amdahl’s law [6], serial sections
within a massively parallel application with lots of TLP are performance constraints.
A current (and future) challenge for mobile processors vendors is how to efficiently
increase single thread performance in these resource-constrained processors.

http://apt.cs.man.ac.uk


2 Reconfigurable Single Thread Acceleration in Mobile Processors

Unfortunately, the time-tested approach for serial performance improvement in em-
bedded processors – accelerating compute intensive parts of applications using dedi-
cated hardware – is unsuitable for modern mobile processors because of the heterogene-
ity and diversity of applications. The next best alternative is having ‘general purpose’
hardware, reconfigured on an application-by-application basis to realise frequently oc-
curring functions. This is less efficient in terms of area, cost and power than fixed hard-
ware but allows a GPP to be specialised based on the application it’s currently running.

Reconfigurable hardware has been used successfully to accelerate single threads in
experimental and commercial processors. However, employing it in multicore mobile
processors poses two unique challenges.

A typical Reconfigurable Architecture (RA) is composed of several memory ele-
ments, programmable interconnect and an array of many Processing Elements (PEs)
making its deployment prohibitive due to its significant area and power consumption.
Further, mobile processors rely extensively on dynamic compilation, which is not yet
common on RAs, to improve portability. Dynamic compilation is important as an in-
creasing number of parallel programming systems rely on it to provide forward scaling
[13]: applications that effectively scale with new core counts as well as the unavoid-
able augmentation and evolution of the instruction set. For instance, kernels (critical
parallel functions) in Intel R© Array Building Blocks (IABB) [13] are first compiled to
a platform independent Intermediate Representation (IR) then dynamically compiled to
binary via a Virtual Machine (VM) at run-time.

This paper presents the
VIrtual REconfigurable Micro-ENgine for Translation (VIREMENT), a mobile mul-
ticore processor employing general purpose accelerators to improve single thread per-
formance. The general purpose accelerator is a Reconfigurable Functional Unit (RFU)
placed within the datapath of each CPU. VIREMENT supports dynamic compilation
by providing a run-time library for generating reconfigurable instructions on-the-fly.
Experiments show an average performance improvement of 133% (2.33×) with area
overhead of 34% per CPU.

2 Related work

Over the years, architectures that dynamically translate code to run on reconfigurable
hardware have been developed. Such architectures eliminate dependencies on hardware
features, letting hardware vendors significantly change features from one hardware gen-
eration to the next without breaking binary portability.

Warp [17] is a family of processors that automatically extracts and compiles kernels
to Field-Programmable Gate Array (FPGA). A typical Warp processor is a System on
Chip (SoC) with a main processor for executing applications, a less powerful processor
on which a lean FPGA compiler runs, a profiler and a custom FPGA. It translates binary
sequences to hardware transparently by profiling executing binary program, detecting
critical regions, decompiling them, synthesising them to hardware, placing and routing
them onto a custom on-chip FPGA, and updating the binary to call the hardware next
time. However, its CAD algorithms, which run on a separate microprocessor, require
significant resources as well as time to execute. The use of an FPGA limits it to a few



Boosting Single Thread Performance in Mobile Processors 3

loops and consequently to applications where a few loops dominate because of the large
memory required to save FPGA configurations.

The Configurable Compute Array (CCA) [11] is a matrix of simple, coarse-grained
functional units coupled to a host CPU. Accelerating applications on the CCA involves
two steps: the discovery/delineation of suitable, critical sub-graphs within the Directed
Flow Graphs (DFGs) for the CCA and the replacement of such sub-graphs with micro-
operations that configure the CCA. Static and dynamic approaches for sub-graphs selec-
tion were presented. Dynamic discovery involves a trace cache and its associated hard-
ware optimiser which is rare in mobile processors because of cost and energy issues.
Static discovery finds suitable code sequences for mapping onto the CCA at compile
time using traditional compiler-based techniques for instruction set customisation.

CCA offered performance improvements to a variety of applications but no area,
power nor latency measurements were provided making it difficult to evaluate the over-
all effectiveness of the approach. Further, CCA does not support shifts nor memory
operations and handles only four inputs and two outputs thus limiting its application.

Dynamic Instruction Merging (DIM) [7] dynamically translates binaries to coarse-
grained hardware using a hardware based translator. Translation is simultaneous with
instruction fetch and translated sequences are cached on-chip. The next time a cached
sequence is fetched the saved translation is executed atomically and the processor’s
Program Counter (PC) updated to allow software execution to continue. Custom Re-
configurable Arrays for Multiprocessor System (CReAMS) [18] is based on DIM but
has a pipelined translator.

The translation algorithm is simple and fast as it is implemented in hardware but
opportunities for optimising the many micro-operations produced by the translation
process are missed. Further, energy is spent translating cold instruction sequences that
contribute little to performance as DIM attempts to translate all instructions.

Another project [19] is based on a heterogeneous multicore processor where, cores
being either Reconfigurable Hardware Unit (RHU)-cores or Reconfiguration Instruction
Generation (RIG)-cores. An RHU-core is a superscalar CPU augmented with an RFU.
The RIG-core is based on the same CPU as the RHU-core but with a hardware reconfig-
urable instruction generator. Each RIG-core services a number of RHU-cores and has
no reconfigurable fabric. Each RHU-core collects traces of committed instructions and
dispatches them to a RIG-core for translation. When the configuration is returned, it is
stored in the RHU-core thread’s address space. When next the start of a trace is detected
the associated configuration(s) is fetched, decoded and processed by the RFU instead.

Despite its performance improvements this architecture may be too ‘complex’ for
mobile processors as it uses trace caches with the consequent cost and energy penalties.

3 System Architecture

VIREMENT could be described as a multicore dynamic Application Specific Instruction-
set Processor (ASIP) [14] that uses reconfigurable functional unit(s) instead of custom
functional unit(s) to reduce power consumption and boost processing speed. It con-
sists of a host CPU extended with reconfigurable hardware. Non-critical parts of an
application are implemented using the standard instruction set (and run on standard



4 Reconfigurable Single Thread Acceleration in Mobile Processors

functional units) while kernels are implemented using a reconfigurable instruction set
(micro-ops) which run on the reconfigurable functional unit(s). VIREMENT, unlike tra-
ditional stream oriented systems, takes small amounts of data at a time from the host’s
register file and produces another small amount of output. This imposes fewer restric-
tions on the characteristics of the application, allowing acceleration in most cases.

VIREMENT provides a compiler, the Dynamic Compilation Engine (DCE), to sup-
port dynamic compilation in VMs. In addition to its use in traditional ‘write-once-run-
anywhere’ language VMs dynamic compilation is increasingly being employed in par-
allel programing systems to allow applications to ‘forward scale’ [13] as well as to
support dynamic mapping [16]. DCE, based on Low Level Virtual Machine (LLVM)
[15], provides dynamic code generation on VIREMENT and C/C++ APIs to enable in-
tegration into VMs. The code generation process is quite simple and is illustrated at a
high level in Figure 1a. Initially, kernels in an application are identified and translated
into a suitable IR. Each basic block from the critical functions is then translated into
micro-ops by the DCE. The original basic block is extracted from the function and re-
placed by a single instruction which serves as a pointer to the memory location of the
micro-ops for that particular basic block. Each of the original basic block, now replaced
by a special instruction pointing to its configuration, executes as an atomic unit on the
reconfigurable functional unit(s) (Figure 1b). Essentially the DCE synthesises an ap-
plication specific instruction, on-the-fly, to replace each basic block in a kernel. Large
basic blocks may map into more than one group of micro-ops.

BB 2

BB 3

BB 1

Kernel in IR

BXV #1

BXV #2

BXV #3

DCE

Kernel in Machine 
Code

Reconfigurable 
instructions

(a) Code generation on DCE

B deadbeef3

.deadbeef1 .deadbeef2

Reconfigurable 
Functional Unit

load 
operands

load 
configuration

BXV #1 B deadbeef2B deadbeef1 BXV #2

Standard 
Functional 

Unit

(b) Reconfigurable execution on VIREMENT

Fig. 1: Overview of compilation and execution on VIREMENT

4 Microarchitecture

VIREMENT is simply a 4-core processor with each CPU augmented with an RFU.
Logically each core can be divided into the CPU and the VIREMENT Reconfigurable
Functional Unit (VRFU).

4.1 CPU

The CPU is comparable to the ARM926EJ-S and runs at 200 MHz. It has a simple, in-
order, 5-stage pipeline, Harvard architecture, RISC core which is replicated four times.



Boosting Single Thread Performance in Mobile Processors 5

Each VIREMENT core has separate L1 data and instruction caches. The data cache is
two-way banked allowing two simultaneous cache accesses per cycle if the two cache
accesses are to different banks

Each CPU supports three types of instruction sets: ARM, Thumb and VIREMENT
Execution Environment (VEE). ARM is the 32-bit main instruction set while Thumb is
the 16-bit subset of ARM. VEE is the reconfigurable instruction set, micro-ops, but can
only be accessed by executing a special ‘ARM’ instruction “Branch-to-Virement”(BXV).
Decoding micro-ops is the responsibility of the VRFU. Therefore, each BXV serves
only as a pointer to a single context of micro-ops, uniquely identified by the address
encoded in the BXV.

Figure 2a shows how the RFU is integrated into the CPU. The decode stage is
modified to stall the pipeline once it recognises a BXV. The decoder simply forwards
the address portion of the BXV to the VRFU and awaits for the completion signal
from VRFU to remove the stall signal. The VRFU itself consists of an array of PEs,
the VIREMENT Reconfigurable Datapath (VRD) and the VIREMENT Control Unit
(VCU). The VCU is mainly responsible for managing reconfiguration.

W
R

IT
E

M
E

M
O

R
Y

E
X

E
C

U
TE

D
E

C
O

D
E

FE
TC

H

4

3 5

1

2

6

stall

address

to/from 
reg file

VRD

VCU

Control
 Logic

Cache

(a) Instruction execution on VRFU(numbers de-
note sequence)

[1,2] [1,3] [1,N][1,1]

[2,1] [2,3][2,2] [2,N]

FLAG SWITCH

DATA SWITCH

DATA SWITCH

FLAG SWITCHDATA SWITCH

registers flags

(b) ALU interconnection on theVRD

Fig. 2: Overview of compilation and execution on VIREMENT

4.2 VIREMENT Reconfigurable Datapath

The VRD comprises an array of interconnected PEs with data routed using multiplexers.
It is purely combinational to reduce its complexity, latency and energy consumption.
The PEs are arranged into rows, with each row connected to the next through a switch
box. Computation flows from top to bottom with each switch box capable of connect-
ing any of the previous row output to any of the next row PE input. This restrictive
interconnection simplifies P&R facilitating dynamic compilation on the RFU.

The fundamental processing element in the VRD is the Arithmetic and Logic Unit
(ALU). The ALUs are simple to reduce latency, cost and energy consumption. Currently
only integer operations are supported. Each operation has three operands, two 32-bit
values and a 1-bit flag. Operations generate a four flag bits: a sign flag, a zero flag, an
overflow flag and a carry out flag. These are similar to the host CPU’s allowing the core
and the VRFU to exchange flags. Figure 2b shows how the ALUs are interconnected.



6 Reconfigurable Single Thread Acceleration in Mobile Processors

In addition to ALU operations, a few PEs per row are capable of loads/stores through
the multi-banked L1 data cache. The address of each load/store must be calculated in
an ALU in the previous row. All data accesses are through the L1 cache and the VCU
stalls the VRD in the case of a miss. Channelling all memory accesses through the L1
cache allows the VRFU to out-source cache coherency management to the CPU. This
keeps the VRFU design and programming simple.

4.3 VIREMENT Control Unit

The VCU’s primary responsibility is to manage reconfiguration. It has a small SRAM
for caching configuration contexts fetched from the main memory. Contexts are sup-
plied almost instantaneously to VRD from the local cache. The VCU fetches configura-
tion contexts directly from the main memory, via the DMA. Configuration contexts are
all the same size making cache management simple and eliminating cache fragmenta-
tion. The cache employs a LRU replacement policy.

5 Structure of the Dynamic Compiler Engine (DCE)

The DCE generates code on the fly for the VRFU, starting from LLVM IR [15]. As with
time- and resource-limited run-time compilers used on mobile processors, emphasis is
on speed, small memory footprint and energy efficiency rather than code quality. The
DCE relies heavily on the LLVM compiler framework [15] for transformations and
analysis.

Dynamic compilation incurs substantial overhead. Further, quality may suffer in the
quest to generate code within a limited time budget. However, overheads are largely
amortised in the typical DCE usage model: compiling relatively small, critical sections
in a long running application. Quality issues could be tackled with split compilation,
performing time-consuming analysis offline and saving the results for run-time use.

LLVM’s Static Single Assignment (SSA) IR offers a number of advantages to DCE.
It can serve both as a persistent, offline code representation and as a compiler internal
representation, with no semantic conversions needed between the two [15]. It is increas-
ingly being used in parallel compilation systems targetted by DCE. For instance, AMD
embeds LLVM IR source for kernels in its OpenCL Binary Image Format (BIF) 2.0 [5].

5.1 Code Generation Process

The generation of reconfigurable instruction is basically a post-pass optimisation within
the CPU code generator. CPU instructions are first generated and then translated into
micro-ops. This allows for the seamless intermixing of standard and reconfigurable in-
structions since not all operations can be performed on the VRFU. The pass is fast and
lean (it is slightly more complex than the code generators in software binary transla-
tors) allowing its use in mobile devices with constrained processing power and storage.
However, it has advantages over present hardware reconfigurable translators as more
sophisticated optimisations and post-fabrication modifications are enabled.



Boosting Single Thread Performance in Mobile Processors 7

Code generation can be logically divided into nine distinct steps which are:

1. DAG Formation: The first step is the expansion of the LLVM input into a Direct
Acyclic Graph (DAG) of LLVM instructions.

2. Instruction Selection: This step converts the DAG of LLVM instructions into a
DAG of native CPU instructions using a pattern-matching instruction selector.

3. Scheduling and Formation: In this pass, a scheduler assigns a linear order to the
DAG from the previous stage. The DAG is now converted to a sequential list of
MachineInstrs [4] and destroyed. MachineInstr is an abstract way of representing
machine instructions in LLVM. It represents a machine instruction as an op-code
number and a set of operands.

4. Register Allocation & SSA Deconstruction: Virtual registers are eliminated from
instructions and replaced with physical registers.

5. Reconfigurable Instruction Generation: This is the pass that extracts and con-
verts CPU instructions into micro-ops with each set of extracted CPU instructions
being replaced by a single BXV instruction. The pass is a functional level pass i.e. it
executes on each function in the program independent of all of the other functions.
(a) Instruction Translation: This stage identifies and translates supported Ma-

chineInstrs to micro-ops. Here, instructions are extracted, sequentially, from
the list of MachineInstrs and translated into micro-ops represented using
VIREMENT Intermediate Representation (VIR). A micro-op in VIR is an n-
tuple consisting of an operator and operands. Each instruction is given a unique
number, called an ID, as it is translated. IDs help in tracking dependencies be-
tween micro-ops.
Translation starts from the beginning of a basic block and ends when an unsup-
ported instruction or the end of the basic block is encountered. Listing 1 shows
an example translation. If the number of translated MachineInstrs is above a
certain threshold compilation proceeds to item 5b else the translated micro-ops
are discarded and translation restarts at the next instruction beyond the unsup-
ported one (see pseudo code in algorithm 1).

(b) Micro-ops optimisation: A number of optimisations could be applied to the
micro-ops at this stage. Presently, the main one is the removal of copy instruc-
tions. Copy (register-to-register move) instructions, are redundant on VRFU as
operands can be moved directly from producers to consumers.

(c) Micro-ops Placement and Routing: This stage involves the simultaneous
placement and routing of micro-ops on the VRFU. The output of this stage
is pseudo-assembly code for the VRFU. Placement and Routing (PR) of the
micro-ops uses a simple, single-pass greedy algorithm (subsection P & R Al-
gorithm) to keep resource consumption and time overhead to a minimum. The
algorithm simply takes a micro-op from the linear VIR and determines, based
on data dependencies and resource availability, where to place it on the VRD.

(d) Micro-ops Code Emission: Binary code is generated for the VRFU along with
‘glue’ code needed for loading operands and writing results back to the CPU.
This happens during code emission for the CPU.

6. Code Emission: The completed machine code is emitted into memory ready for
execution. Each BXV in the machine code points to a corresponding configuration.



8 Reconfigurable Single Thread Acceleration in Mobile Processors

Input: MBB /* Basic block of MachineInstrs from step 4

*/
Output: MBBBXV /* Basic block of MachineInstrs with BXV

instructions */
Output: Configs1,2,...,n /* VIREMENT configurations */

1 while MachineInstr in MBB do
2 Translation Buffer← initialise translation buffer(void);
3 while MachineInstr is supported do
4 Micro-op← translate to microop(MachineInstr);
5 save microop in translation buffer(Microops);
6 end
7 if number translated MachineInstr < threshold then continue;
8 Translation Bufferopt ← optimize microops(Translation Buffer);
9 Translation Bufferpr ← place & route(Translation Bufferopt);

10 if P & R fails —— P & R unbeneficial then continue;
11 MBBBXV ← replace successfully routed machineinstr with bxv(MBB);
12 Configs1,2,...,n ← emit microop to memory(Translation Bufferpr);
13 end
Algorithm 1: Pseudo code for the Reconfigurable Instruction Generation pass

P & R Algorithm The algorithm is quite simple: the first step is to retrieve the next
unscheduled micro-op in the VIR. The operands (including flags) are read to verify
dependencies. Dependencies are tracked using a small data structure called the Depen-
dency table which shows the row and column on the VRD where each operand was
last defined. The columns are numbered from left to right while the rows are numbered
from top to bottom. The row numbers of all the source operands are compared and the
operand with the highest row number determines where the micro-op is to be placed.

The next step is to search for a free PE on the VRD to place the micro-op in. Re-
source usage is modelled with a matrix-like structure, PE Table, which has the same
dimensions as the VRD. Each element represents a PE and contains information such
as resource availability. Each row in the PE Table is scanned from left to right, start-
ing from the row determined by the Dependency table, until a free unit is found. The
Dependency table is then updated if the micro-op just place defines a value(s). The con-
figuration for the multiplexers are generated from information stored in the PE Table.

If the VRFU size is 4x4 and the first micro-op from Listing 1.2 is already placed in
PE00. A query to the Dependency table for the second instruction will return row 1 as
%r5 and %f1 are defined (have entries in the Dependency table) by the first instruction
in row 0. The other source operands do not have entries in the Dependency table and
need to be fetched from the register file, so they have no influence on the placement.
The PE Table is then scanned from left to right starting from row 1. PE01 is empty so
the micro-op is placed on it and the Dependency table table updated to reflect that %r3
is now defined by PE10. The next use of %r3 (third instruction) must now be placed in
a row higher than 1.



Boosting Single Thread Performance in Mobile Processors 9

Listing 1 Example translation MachineInstrs to micro-ops. The subscript numbers in List-
ing 1.2 are the IDs. %f,%i,%r,%t denote flag, register,immediate and temporary operands.%f1
means that flag is supplied by instruction with ID 1 and %i8 is an immediate of size 8 bits. The
PC relative branch in Listing 1.1 stops translation.

bb12 :
%r5 = adds %r4 ,% r3
%r3 = adc %r2 ,% r5
%r4 = l d r [%r3 ,−%r0 ]
b r %i 8

Listing 1.1 Translation: MachineInstrs

%r5 = add1 %r4 ,% r3
%r3 = adc2 %r2 ,% r5 ,% f1
%t 1 = sub3 %r3 ,% r0
%r4 = l d r 4 [% t 1 ]

Listing 1.2 Translation: Micro-ops

6 Evaluation

6.1 Performance Evaluation

To evaluate the performance the architecture a cycle approximate simulation model of
VIREMENT based on GEM5 [9] was developed. The parameters used in the model
were derived by describing VIREMENT in Verilog and synthesising the description us-
ing the Synposys DC compiler [3] with the Nangate 45 nm cell library [2]. The initial
development of the DCE was done on Open Virtual Platform (OVP) CPIntegratorPlat-
form [1] (a virtual platform). The simulator runs under Linux with a memory of 256 MB
and no swap space. This is similar to the execution environment in a typical modern
smart-phone. The size of the VRD is 4X4 with two PEs per row capable of performing
loads and stores using address calculated in the previous row.

Program Benchmark Suite Application Domain Parallelization Model Implementation Total Instructions (Billions)
fib BOTS integer tasks OpenMP 7.02
sort BOTS integer sorting tasks OpenMP 6.34
bfs Rodinia graph tasks OpenMP 16.69
freqmine Parsec data mining data-parallel OpenMP 43.90
nqueens BOTS games tasks OpenMP 61.31

Table 1: Description of benchmarks

Benchmarks from Parsec [8], Rodinia [10] and Bots [12] were compared (the bench-
mark suite is described in Table 1) running on VIREMENT and using DCE for code
generation against statically complied versions running on a baseline. The baseline is
exactly like VIREMENT less the VRFU. The benchmarks are largely integer bench-
marks as VRFU does not yet support floating point operations. We modified bench-
marks for VIREMENT to mimic parallel systems that dynamically compile kernels by
compiling kernels to LLVM IR and embedding them in the native binary. The compi-
lation of kernels to LLVM IR does not require special preparation and was done with a
standard compiler. The host code was then modified to trigger a DCE based VM when
a kernel was called for the first time. The VM’s input was LLVM IR with code cache
for storing generated code. We only measured performance (speedup) over the parallel
region(s) of each benchmark.



10 Reconfigurable Single Thread Acceleration in Mobile Processors

Figure 3 shows speedup, the ratio of the execution time on baseline to execution
time on VIREMENT to for each benchmark described in Table 1. nqueens gained most
running on VIREMENT with a speedup of 2.7 against sort with only 1.4. On aver-
age, VIREMENT is faster than the baseline by 2.3×. This is largely attributable to the
increased Instruction Level Parallelism (ILP) offered by VRD. This, combined with
the relatively small overhead of DCE (on average about 2% of the execution time on
VIREMENT) and the small number of compilations, only a few functions need to be
compiled for VIREMENT to outperform the baseline.

The benchmarks that experienced significant boost in performance, such as nqueens
and freqmine all have dominant kernels with significant ILP. However, ILP is lim-
ited within basic blocks especially non-numeric programs. This suggests that enabling
DCE to compile across basic block boundaries would improve performance further.
Presently, we are enhancing DCE to support PR across basic block boundaries. We
are also developing a pass that allows the DCE code generator to quickly estimate the
benefits of compiling a piece of code. This will save energy and time compared to the
present approach where DCE has to translate and PR code before finding out if the code
sequence will benefit from running on VIREMENT.

 0

 5

 10

 15

 20

 25

 30

fib sort
bfs

freqm
ine

nqueens

average

e
xe

cu
ti

o
n
_b

a
se

lin
e
/e

xe
cu

ti
o
n
_V

IR
E
M

E
N

T Baseline
VIREMENT

Fig. 3: Results of performance evaluation

Figure 4 shows the percentage of execution time spent compiling and the number
of kernels (critical functions) complied by DCE for each application. Table 2 shows
for each benchmark the number of LLVM instructions complied and the compilation
overhead in cycles.

6.2 Area Evaluation

Estimates from synthesis show that VRFU is only 34% of each VIREMENT CPU be-
cause of simplicity of the design, (Table 3). The addition of the VRFU increases the size



Boosting Single Thread Performance in Mobile Processors 11

fib sort bfs

fre
qmine

nqueens
0.0

0.5

1.0

1.5

2.0

%
 c

o
m

p
lia

ti
o
n
 t

im
e

fib sort bfs

fre
qmine

nqueens
0

2

4

6

8

10

n
u
m

b
e
r 

o
f 

fu
n
ct

io
n
s 

co
m

p
lie

d

Fig. 4: Compilation Statics

of the CPU by half with majority of the area of the VRFU occupied by the VRD. We
believe that the size of the VRFU could be reduced significantly with design and syn-
thesis optimizations. Assuming each gate is a NAND gate (4 transistors) each VRFU
requires about 473,000 transistors.

Program Num. LLVM Instructions Compilation Overhead (Millions Cycles )
fib 9 31.16
sort 324 58.27
bfs 280 52.37

nqueens 89 49.27
freqmine 2194 352.86

Table 2: Compilation Overhead

Component Gate Equivalents
CPU 226,000
VRD 66,808
VCU 51,612

Table 3: Area breakdown

7 Conclusions

This work demonstrates that it is possible to use a reconfigurable hardware to improve
single thread performance on resource constrained mobile processors in a cost effec-
tive manner. It also showed how dynamic compilation could be provided on such an
architecture. We obtained mean speedup of up 2.33× over five diverse programs while
increasing the area of each CPU by only 52%.

8 Acknowledgements

The authors would like to thank Imperas Software Limited for supporting this research
through tool provision.



12 Reconfigurable Single Thread Acceleration in Mobile Processors

References

1. Open Virtual Platform
TM

, http://www.ovpworld.org
2. Si2., http://www.si2.org
3. Synopsys Inc., http://www.synopsys.com
4. The LLVM Target-Independent Code Generator, http://llvm.org/docs/

CodeGenerator.html
5. AMD Accelerated Parallel Processing OpenCL R©. Advanced Micro Devices, Inc.,

Sunnyvale, CA, USA. (August 2011), http://developer.amd.com/sdks/
amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming_Guide.pdf

6. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing
capabilities. In: Proc. of the April 18-20, 1967, spring joint Comp. conf. pp. 483–485. AFIPS
’67 (Spring), ACM, New York, USA (1967)

7. Beck, A.C.S. et al.: Transparent reconfigurable acceleration for heterogeneous embedded
applications. In: Proc. of the Conf. on Design, Automation and Test in Europe. pp. 1208–
1213. DATE ’08, ACM, New York, USA (2008)

8. Bienia, C. et al.: The PARSEC benchmark suite: characterization and architectural impli-
cations. In: Proc. of the 17th Int. Conf. on Parallel Arch. and Compilation Techniques. pp.
72–81. PACT ’08, ACM, New York, USA (2008)

9. Binkert, N.L. et al.: The M5 simulator: Modeling networked systems. IEEE Micro 26, 52–60
(July 2006)

10. Che, S. et al.: Rodinia: A benchmark suite for heterogeneous computing. In: Proc. of the
2009 IEEE Int. Symp. on Workload Characterization (IISWC). pp. 44–54. IISWC ’09, IEEE
Comp. Society, Washington, USA (2009)

11. Clark, N et al.: Processor acceleration through automated instruction set customization. In:
Proc. of the 36th annual IEEE/ACM Int. Symp. on Microarchitecture. pp. 129–. MICRO 36,
IEEE Comp. Society, Washington, USA (2003)

12. Duran, A. et al.: Barcelona OpenMP Tasks Suite: A set of benchmarks targeting the exploita-
tion of task parallelism in OpenMP. In: Proc. of the 2009 Int. Conf. on Parallel Processing.
pp. 124–131. ICPP ’09, IEEE Comp. Society, Washington, USA (2009)

13. Ghuloum, A. et al.: Future-Proof Data Parallel Algorithms and Software on IntelTMfor Multi-
Core Architecture. Intel Technology Journal 11(4), 333 –347 (Nov 2007)

14. Keutzer, K. et al.: From ASIC to ASIP: the next design discontinuity. In: Comp. Design:
VLSI in Comp.s and Processors, 2002. Proc.. 2002 IEEE Int. Conf. on. pp. 84 – 90 (2002)

15. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proc. of the Int. Symp. on Code Generation and Optimization. pp. 75–86.
CGO ’04, IEEE Comp. Society, Washington, USA (2004)

16. Luk, C.K. et al.: Qilin: exploiting parallelism on heterogeneous multiprocessors with adap-
tive mapping. In: Proc. of the 42nd Annual IEEE/ACM Int. Symp. on Microarchitecture. pp.
45–55. MICRO 42, ACM, New York, USA (2009)

17. Lysecky, R. et al.: Warp processors. In: Proc. of the 41st annual Design Automation Conf.
pp. 659–681. DAC ’04, ACM, New York, NY, USA (2004)

18. Rutzig, M.B. et al.: CReAMS: an embedded multiprocessor platform. In: Proc. of the 7th
Int. Conf. on Reconfigurable computing: architectures, tools and applications. pp. 118–124.
ARC’11, Springer-Verlag, Berlin, Heidelberg (2011)

19. Suri, T., Aggarwal, A.: Improving scalability and per-core performance in multi-cores
through resource sharing and reconfiguration. In: VLSI Design, 2009 22nd Int. Conf. on.
pp. 145 –150 (2009)

http://www.ovpworld.org
http://www.si2.org
http://www.synopsys.com
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/CodeGenerator.html
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

	Lecture Notes in Computer Science
	Introduction
	Related work
	System Architecture
	Microarchitecture
	CPU
	VIREMENT Reconfigurable Datapath
	VIREMENT Control Unit

	Structure of the Dynamic Compiler Engine (DCE)
	Code Generation Process
	P & R Algorithm


	Evaluation
	Performance Evaluation
	Area Evaluation

	Conclusions
	Acknowledgements


