2 research outputs found
Single cell transcriptome atlas of the Drosophila larval brain
Cell diversity of the brain and how it is affected by starvation, remains largely unknown. Here, we introduce a single cell transcriptome atlas of the entire Drosophila first instar larval brain. We first assigned cell-type identity based on known marker genes, distinguishing five major groups: neural progenitors, differentiated neurons, glia, undifferentiated neurons and non-neural cells. All major classes were further subdivided into multiple subtypes, revealing biological features of various cell-types. We further assessed transcriptional changes in response to starvation at the single- cell level. While after starvation the composition of the brain remains unaffected, transcriptional profile of several cell clusters changed. Intriguingly, different cell-types show very distinct responses to starvation, suggesting the presence of cell-specific programs for nutrition availability. Establishing a single-cell transcriptome atlas of the larval brain provides a powerful tool to explore cell diversity and assess genetic profiles from developmental, functional and behavioral perspectives
Interference of HTLV-1 Tax Protein with Cell Polarity Regulators: Defining the Subcellular Localization of the Tax-DLG1 Interaction
Human T cell leukemia virus (HTLV)-1 Tax (Tax) protein is very important in viral replication and cell transformation. Tax localizes in the nucleus and cytoplasm in association with organelles. Some activities of Tax depend on interactions with PDZ (PSD-95/Discs Large/Z0-1) domain–containing proteins such as Discs large protein 1 (DLG1) which is involved in cell polarity and proliferation. The DLG1 interaction results in a cytoplasmic co-localization pattern resembling vesicular aggregates, the nature of which is still unknown. To further explore the role of PDZ proteins in HTLV-1 cell transformation, we deeply investigated the Tax-DLG1 association. By fluorescence resonance energy transfer (FRET), we detected, for the first time, the direct binding of Tax to DLG1 within the cell. We showed that the interaction specifically affects the cellular distribution of not only DLG1, but also Tax. After studying different cell structures, we demonstrated that the aggregates distribute into the Golgi apparatus in spatial association with the microtubule-organizing center (MTOC). This study contributes to understand the biological significance of Tax-PDZ interactions