418 research outputs found

    A Regenerable Biosensing Platform for Bacterial Toxins

    Get PDF
    Waterborne diarrheal diseases such as travelers’ diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers’ diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 ÎŒM. Furthermore, our platform shows a temperature-mediated “catch-and-release” behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use

    Electrochemical and thermal detection of allergenic substance lysozyme with molecularly imprinted nanoparticles

    Get PDF
    Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5–10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid–liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5–10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    Get PDF
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Measurement of the Dependence of the Hadron Production Fraction Ratios fs/fuf_s / f_u and fd/fuf_d / f_u on BB Meson Kinematic Variables in Proton-Proton Collisions at s=13TeV\sqrt{s} = 13 TeV

    Get PDF
    The dependence of the ratio between the Bs0B^0_s and B+B^+ hadron production fractions, fs/fuf_s/f_u, on the transverse momentum (pT)(p_T) and rapidity of the BB mesons is studied using the decay channels Bs0→J/ψϕB^0_s→J/ψϕ and B+→J/ψK+B^+→J/ψK^+. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6  fb−161.6  fb^{−1}. The fs/fuf_s/f_u ratio is observed to depend on the BB pTp_T and to be consistent with becoming asymptotically constant at large pTp_T. No rapidity dependence is observed. The ratio of the B0B^0 to B+B^+ meson production fractions, fd/fuf_d/f_u, is also measured, for the first time in proton-proton collisions, using the B0→J/ψK∗0B^0→J/ψK^{*0} decay channel. The result is found to be within 1 standard deviation of unity and independent of pTpT and rapidity, as expected from isospin invariance

    Evidence for four-top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for top squark pair production in a final state with at least one hadronically decaying tau lepton in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data

    Get PDF
    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared

    Search for Higgs Boson and Observation of Z Boson through Their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (pT) greater than 450 GeV and decaying to a charm quark-antiquark (cÂŻc) pair is presented. The search is performed using proton-proton collision data collected at √s=13  TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138  fb−1. Boosted H→cÂŻc decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cÂŻc decay process, which is observed in association with jets at high pT for the first time with a signal strength of 1.00+0.17−0.14(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cÂŻc) is set at 47 (39) times the SM prediction at 95% confidence level
    • 

    corecore