426 research outputs found

    Withholding or withdrawing invasive interventions may not accelerate time to death among dying ICU patients

    Full text link
    We considered observational data available from the MIMIC-III open-access ICU database and collected within a study period between year 2002 up to 2011. If a patient had multiple admissions to the ICU during the 30 days before death, only the first stay was analyzed, leading to a final set of 6,436 unique ICU admissions during the study period. We tested two hypotheses: (i) administration of invasive intervention during the ICU stay immediately preceding end-of-life would decrease over the study time period and (ii) time-to-death from ICU admission would also decrease, due to the decrease in invasive intervention administration. To investigate the latter hypothesis, we performed a subgroups analysis by considering patients with lowest and highest severity. To do so, we stratified the patients based on their SAPS I scores, and we considered patients within the first and the third tertiles of the score. We then assessed differences in trends within these groups between years 2002-05 vs. 2008-11. Comparing the period 2002-2005 vs. 2008-2011, we found a reduction in endotracheal ventilation among patients who died within 30 days of ICU admission (120.8 vs. 68.5 hours for the lowest severity patients, p<0.001; 47.7 vs. 46.0 hours for the highest severity patients, p=0.004). This is explained in part by an increase in the use of non-invasive ventilation. Comparing the period 2002-2005 vs. 2008-2011, we found a reduction in the use of vasopressors and inotropes among patients with the lowest severity who died within 30 days of ICU admission (41.8 vs. 36.2 hours, p<0.001) but not among those with the highest severity. Despite a reduction in the use of invasive interventions, we did not find a reduction in the time to death between 2002-2005 vs. 2008-2011 (7.8 days vs. 8.2 days for the lowest severity patients, p=0.32; 2.1 days vs. 2.0 days for the highest severity patients, p=0.74)

    Pollen Streptomyces Produce Antibiotic That Inhibits the Honey Bee Pathogen Paenibacillus larvae

    Get PDF
    Humans use natural products to treat disease; similarly, some insects use natural products produced by Actinobacteria to combat infectious pathogens. Honey bees, Apis mellifera, are ecologically and economically important for their critical role as plant pollinators and are host to diverse and potentially virulent pathogens that threaten hive health. Here, we provide evidence that Actinobacteria that can suppress pathogenic microbes are associated with A. mellifera. We show through culture-dependent approaches that Actinobacteria in the genus Streptomyces are commonly isolated from foraging bees, and especially common in pollen stores. One strain, isolated from pollen stores, exhibited pronounced inhibitory activity against Paenibacillus larvae, the causative agent of American foulbrood. Bioassay-guided HPLC fractionation, followed by NMR and mass spectrometry, identified the known macrocyclic polyene lactam, piceamycin that was responsible for this activity. Further, we show that in its purified form, piceamycin has potent inhibitory activity toward P. larvae. Our results suggest that honey bees may use pollen-derived Actinobacteria and their associated small molecules to mediate colony health. Given the importance of honey bees to modern agriculture and their heightened susceptibility to disease, the discovery and development of antibiotic compounds from hives could serve as an important strategy in supporting disease management within apiaries.National Institute for Health/[U19 AI142720]/NIH/Estados UnidosNational Institute of Food and Agriculture/[WISO1321]/NIFA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Burkholderia from fungus gardens of fungus-growing ants produce antifungals that inhibit the specialized parasite Escovopsis.

    Get PDF
    Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies.National Institutes of Health/[U19 TW009872]/NIH/Estados UnidosNational Institutes of Health/[U19 AI142720]/NIH/Estados UnidosNational Institutes of Health/[T32 AI055397]/NIH/Estados UnidosNational Science Foundation/[DEB-1927155]/NSF/Estados UnidosSão Paulo Research Foundation/[2013/50954-0]/FAPESP/BrasilUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Dimensions of biodiversity in Chesapeake Bay demersal fishes: patterns and drivers through space and time

    Get PDF
    Biodiversity has typically been described in terms of species richness and composition, but theory and growing empirical evidence indicate that the diversity of functional traits, the breadth of evolutionary relationships, and the equitability with which individuals or biomass are distributed among species better characterize patterns and processes within ecosystems. Yet, the advantages of including such data come at the expense of measuring traits, sequencing genes, and counting or weighing individuals, and it remains unclear whether this greater resolution yields substantial benefits in describing diversity. We summarized a decade of high-resolution trawl data from a bimonthly trawl survey to investigate spatial and seasonal patterns of demersal fish diversity in the Chesapeake Bay, USA, with the goal of identifying areas and times of mismatch between different dimensions of diversity, and their response to environmental forcing. We found moderate to strong positive relationships among all metrics of diversity, and that functional and phylogenetic differences were well-reflected in an index derived from taxonomic (Linnaean) hierarchy. Compared with species richness and species diversity, functional, phylogenetic, and taxonomic indices peaked later in the year, which was a consequence of the distribution of biomass among functionally and evolutionarily divergent species. Generalized additive models revealed that spatial, temporal, and environmental variables explained roughly similar proportions of deviance across all aspects of diversity, suggesting that these three factors do not differentially affect the functional and phylogenetic aspects of community structure. We conclude that an index of diversity derived from taxonomic hierarchy served well as a practical surrogate for functional and phylogenetic diversity of the demersal fish community in this system. We also emphasize the importance of evenness in understanding diversity patterns, especially since most ecological communities in nature are dominated by one or few species

    A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity

    Get PDF
    Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product
    corecore