128 research outputs found
Differences in CSF Biomarkers Profile of Patients with Parkinson's Disease Treated with MAO-B Inhibitors in Add-On
Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects.Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- β -42, amyloid- β -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups.No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide.Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations
Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: the EverExt study
Evidence on everolimus in breast cancer has placed hyperglycemia among the most common high grade adverse events. Anthropometrics and biomarkers of glucose metabolism were investigated in a observational study of 102 postmenopausal, HR + HER2- metastatic breast cancer patients treated with everolimus-exemestane in first and subsequent lines. Best overall response (BR) and clinical benefit rate (CBR) were assessed across subgroups defined upon fasting glucose (FG) and body mass index (BMI). Survival was estimated by Kaplan-Meier method and log-rank test. Survival predictors were tested in Cox models. Median follow up was 12.4 months (1.0-41.0). The overall cohort showed increasing levels of FG and decreasing BMI (p < 0.001). Lower FG fasting glucose at BR was more commonly associated with C/PR or SD compared with PD (p < 0.001). We also observed a somewhat higher BMI associated with better response (p = 0.052). More patients in the lowest FG category achieved clinical benefit compared to the highest (p < 0.001), while no relevant differences emerged for BMI. Fasting glucose at re-assessment was also predictive of PFS (p = 0.037), as confirmed in models including BMI and line of therapy (p = 0.049). Treatment discontinuation was significantly associated with changes in FG (p = 0.014). Further research is warranted to corroborate these findings and clarify the underlying mechanisms
Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma
Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8′-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8′-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. Conclusions: These small molecules, particularly [8,8′-I2-o-COSAN]−, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma
NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice
The Nuclear Receptor Coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue specific contribution of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich strain Sv129/J. Increased body iron content protects mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to wild-type animals. Reciprocal bone marrow (BM) transplantation from wild-type donors into Ncoa4-ko and from Ncoa4-ko into wild-type mice revealed that microcytosis and susceptibility to iron deficiency anemia depend on BM-derived cells. Erythropoiesis reconstitution with RBC count and hemoglobin normalization occurred at the same rate in transplanted animals independently of the genotype. Importantly, NCOA4 loss did not affect terminal erythropoiesis in iron deficiency, both in total and specific BM Ncoa4-ko animals compared to controls. On the contrary, upon a low iron diet, spleen from wild-type animals with Ncoa4-ko BM displayed marked iron retention compared to (wild-type BM) controls, indicating defective macrophage iron release in the former. Thus, EPO administration failed to mobilize iron from stores in Ncoa4-ko animals. Furthermore, Ncoa4 inactivation in thalassemic mice did not worsen the hematological phenotype. Overall our data reveal a major role for NCOA4-mediated ferritinophagy in macrophages to favor iron release for erythropoiesis, especially in iron deficiency
Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation
Rationale: Caloric restriction improves the efficacy of anti-cancer therapy. This effect is largely dependent on the increase of the extracellular ATP concentration in the tumor microenvironment (TME). Pathways for ATP release triggered by nutrient deprivation are largely unknown.
Methods: The extracellular ATP (eATP) concentration was in vivo measured in the tumor microenvironment of B16F10-inoculated C57Bl/6 mice with the pmeLuc probe. Alternatively, the pmeLuc-TG-mouse was used. Caloric restriction was in vivo induced with hydroxycitrate (HC). B16F10 melanoma cells or CT26 colon carcinoma cells were in vitro exposed to serum starvation to mimic nutrient deprivation. Energy metabolism was monitored by Seahorse. Microparticle release was measured by ultracentrifugation and by Nanosight.
Results: Nutrient deprivation increases eATP release despite the dramatic inhibition of intracellular energy synthesis. Under these conditions oxidative phosphorylation was dramatically impaired, mitochondria fragmented and glycolysis and lactic acid release were enhanced. Nutrient deprivation stimulated a P2X7-dependent release of ATP-loaded, mitochondria-containing, microparticles as well as of naked mitochondria.
Conclusions: Nutrient deprivation promotes a striking accumulation of eATP paralleled by a large release of ATP-laden microparticles and of naked mitochondria. This is likely to be a main mechanism driving the accumulation of eATP into the TME
- …