1,169 research outputs found

    Coherent microwave backscatter of natural snowpacks

    Get PDF
    The backscatter of natural snowpacks was measured using a swept-frequency system operating from 5.8 to 8.0 GHz. Snow layering produced sequences of maxima and minima in backscatter intensity, with typical peak-to-valley ratios of 15 db. Wetness produced in the upper portion of the snowpack by solar heat input enhanced the effect of layering. The layer response persisted for incidence exhibits predominantly coherent properties. Frequency modulation of the incident signal masked the layer response by averaging the unmodulated response over the bandwidth represented by the modulation. Further changes in backscatter were attributed to changes in wetness in the surface regions of the snowpack; for a fixed frequency of 13.5 GHz and incidence angle of 39 deg, the backscatter decreased typically 15 db between 11 A.M. and noon, and returned to approximately its initial level of overnight

    Snow wetness measurements for melt forecasting

    Get PDF
    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow

    The JAWSAT Mission: Final Report and Lessons Learned

    Get PDF
    One Stop Satellite Solutions and the Center for Aerospace Technology recently completed the JAWSAT mission. This was the first flight of the Minotaur launch vehicle and the first time eleven separate micro and pico satellites were placed into orbit with one launch. The JAWSAT project required both new technical designs as well as new programmatic ways of conducting a space mission. Main stream, large satellite, methods were not adequate. Technical lessons learned on this project range from new techniques in versatile, low-cost, structural design to a reasonable method of qualifying commercial off-theshelf electronic components. New methods of final integration and ride sharing were also invented. In program management, new methods in documentation, technical exchange, design review and reporting were developed. Lessons related to schedule, goals, budget, team building, logistics of personnel and materials, and risk assessment and management were studied and implemented. The positive and negative lessons learned in this large small-satellite mission will be of interest to the small satellite community and give insight to those who plan future missions

    Guanfacine treatment improves ADHD phenotypes of impulsivity and hyperactivity in a neurofibromatosis type 1 mouse model

    Get PDF
    BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a mutation in one copy of the neurofibromin gene (NF1+/-). Even though approximately 40-60% of children with NF1 meet the criteria for attention deficit hyperactivity disorder (ADHD), very few preclinical studies, if any, have investigated alterations in impulsivity and risk-taking behavior. Mice with deletion of a single NF1 gene (Nf1+/-) recapitulate many of the phenotypes of NF1 patients. METHODS: We compared wild-type (WT) and Nf1+/- mouse strains to investigate differences in impulsivity and hyperactivity using the delay discounting task (DDT), cliff avoidance reaction (CAR) test, and open field. We also investigated whether treatment with the clinically effective alpha-2A adrenergic receptor agonist, guanfacine (0.3 mg/kg, i.p.), would reverse deficits observed in behavioral inhibition. RESULTS: Nf1+/- mice chose a higher percentage of smaller rewards when both 10- and 20-s delays were administered compared to WT mice, suggesting Nf1+/- mice are more impulsive. When treated with guanfacine (0.3 mg/kg, i.p.), Nf1+/- mice exhibited decreased impulsive choice by waiting for the larger, delayed reward. Nf1+/- mice also exhibited deficits in behavioral inhibition compared to WT mice in the CAR test by repetitively entering the outer edge of the platform where they risk falling. Treatment with guanfacine ameliorated these deficits. In addition, Nf1+/- mice exhibited hyperactivity as increased distance was traveled compared to WT controls in the open field. This hyperactivity in Nf1+/- mice was reduced with guanfacine pre-treatment. CONCLUSIONS: Overall, our study confirms that Nf1+/- mice exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD, and can be used as a model system to identify alterations in neural circuitry associated with symptoms of ADHD in children with NF1

    Microwave Spectroscopy

    Get PDF
    Contains research objectives and reports on four research projects.Signal Corps Contract DA36-039-sc-7489

    Nucleation in Systems with Elastic Forces

    Full text link
    Systems with long-range interactions when quenced into a metastable state near the pseudo-spinodal exhibit nucleation processes that are quite different from the classical nucleation seen near the coexistence curve. In systems with long-range elastic forces the description of the nucleation process can be quite subtle due to the presence of bulk/interface elastic compatibility constraints. We analyze the nucleation process in a simple 2d model with elastic forces and show that the nucleation process generates critical droplets with a different structure than the stable phase. This has implications for nucleation in many crystal-crystal transitions and the structure of the final state

    A proteasome-resistant fragment of NIK mediates oncogenic NF-κB signaling in schwannomas

    Get PDF
    Schwannomas are common, highly morbid and medically untreatable tumors that can arise in patients with germ line as well as somatic mutations in neurofibromatosis type 2 (NF2). These mutations most commonly result in the loss of function of the NF2-encoded protein, Merlin. Little is known about how Merlin functions endogenously as a tumor suppressor and how its loss leads to oncogenic transformation in Schwann cells (SCs). Here, we identify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase (NIK) as a potential drug target driving NF-κB signaling and Merlin-deficient schwannoma genesis. Using a genomic approach to profile aberrant tumor signaling pathways, we describe multiple upregulated NF-κB signaling elements in human and murine schwannomas, leading us to identify a caspase-cleaved, proteasome-resistant NIK kinase domain fragment that amplifies pathogenic NF-κB signaling. Lentiviral-mediated transduction of this NIK fragment into normal SCs promotes proliferation, survival, and adhesion while inducing schwannoma formation in a novel in vivo orthotopic transplant model. Furthermore, we describe an NF-κB-potentiated hepatocyte growth factor (HGF) to MET proto-oncogene receptor tyrosine kinase (c-Met) autocrine feed-forward loop promoting SC proliferation. These innovative studies identify a novel signaling axis underlying schwannoma formation, revealing new and potentially druggable schwannoma vulnerabilities with future therapeutic potential

    Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations

    Full text link
    We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations. There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present preliminary results of numerical simulations in three dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
    • …
    corecore