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RESEARCH OBJECTIVES

Work in the Microwave Spectroscopy Laboratory may be characterized as both pure
and applied paramagnetics. We have been interested in the properties of paramagnetic

materials, gases, liquids, and solids, and in the application of paramagnetic materials

in quantum-mechanical or paramagnetic amplifiers. In general, the work involves an

understanding of, and the development of a description for, the physical behavior of

paramagnetic materials from a quantum-mechanical point of view. We are interested

in energy transfer between the nearly uncoupled degrees of freedom in a system, such

as the spin and the lattice, or between the lattice degrees of freedom themselves, or
between the lattice degrees of freedom and the surrounding temperature bath. This

interest involves not only an understanding of the dynamic properties of matter such as

its saturation characteristics in the presence of electromagnetic energy, but also its

more static characteristics such as the linewidth of the paramagnetic resonance lines

themselves, and its variation with temperature, concentration of paramagnetic ions, and

the amount of ordering within the magnetic system itself.
This laboratory is now actively engaged in research that comes under the following

classes: the hyperfine structure of paramagnetic atoms, atomic recombination meas-

urements, relaxation within electron paramagnetic liquids, problems of spin-spin and

spin-lattice relaxation in solid paramagnetic materials, properties of paramagnetic

amplifiers, and their design and application.
M. W. P. Strandberg

A. RUBY FREQUENCY STANDARD

The development of atomic and molecular frequency standards has been centered

chiefly around the use of quantum transitions of very narrow bandwidth. This report

concerns the possibility of using a ruby maser oscillator as such a standard. It has

been held generally that because of the relatively broad resonance lines in solids, such

materials would prove unsatisfactory in this application. There is reason for believing

that this conclusion is unduly pessimistic.

It has been indicated (1) that the precision of the frequency determination of an oscil-

lator is given by

p 1/2 / 1/2

P = R(signal In signal

\noise noise

where P is the ratio of the resonant frequency to the width of the frequency probability

*This work was supported in part by Signal Corps Contract DA36-039-sc-74895.
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curve, R is the ratio of the resonant frequency to the resonant linewidth, and

Psignal' Pnoise are signal and noise powers, respectively.

The linewidth in ruby should be approximately 10 times that for ammonia, but

paramagnetic oscillators can be built to produce 106 times the power from an ammonia

maser oscillator. If extraneous effects on the frequency stability of solid-state devices

could be minimized, similar performance for the two types of frequency standard

might be expected.

The origin of the anomalous linewidth (minimum width, 14 gauss) of the

paramagnetic centers in ruby is still uncertain. We should be able to achieve

a linewidth of 2 gauss arising from the aluminum magnetic moments alone

because, as we have shown in previous reports, the crystalline field inhomo-

geneity is negligible. Experiments imposed on the magnetic field can be min-

imized by employing a field-independent signal transition frequency. For push-pull

pumping in ruby, with the c-axis oriented 54. 8 with respect to the magnetic-

field direction, this frequency is approximately 5.7 kmc, and a magnetic field

of approximately 2 kilogauss is required. Such a field is readily obtained from

an Alnico permanent magnet, and by controlling the temperature of the magnet

at 10 C, the frequency-stability degradation caused by magnetic-field changes can

be reduced to 1 part in 10 when the oscillator is operated as we have indi-

cated.

To examine the frequency stability of a ruby maser oscillator experimentally,

two units with a nonreciprocal cavity structure (2), and with pink ruby crystals

entirely filling the resonant cavities, have been built to operate at 8.4 kmc. Other

workers have found that serious frequency pulling may result from changes in the

load as seen by the oscillator. The present design employs a cylindrical cavity

operating in the TE11 1 mode, excited in two spatially orthogonal degenerate

modes that are driven Tr/2 radians out of phase. The unidirectional properties

of this cavity should minimize frequency pulling caused by load variations.

At the present time, the two oscillator units are being cold-tested. Pre-

liminary measurements will be made to determine the relative frequency sta-

bility when the oscillators are operated simultaneously in the same magnetic

field. The effect of magnetic-field variations on the frequency difference should

thus be removed. More work, with the use of superconducting solenoids to

provide the stable magnetic field that is required for operation as a frequency

standard, is planned. Push-pull pumping at 21, 660 mc will be employed, and

the signal transition will be between the two center levels of the four energy

levels that are being used. Pumping at 34, 600 mc between the two outside

levels is also being considered.

R. A. McFarlane
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B. SPIN-LATTICE RELAXATION

As other members of this group have pointed out (1, 2), in a multilevel system there

is no one-to-one correspondence between spin-lattice relaxation times, as measured by

the rf saturation method or by relaxation methods, and the spin-phonon transition proba-

bilities calculated from theory. The pertinent relations have been calculated for a four-

level system, with the assumption that it can be represented by a system of rate

equations (3).

With the relaxation method we have to solve the matrix equation

N = WN

4
with the constraint N = constant. Here, N is a column matrix, with N i , the con-

i=l
th

centration of particles in the i state; W.. = w.. + V.. (ifj), with w.., the lattice-induced

transition probability of a particle going from state j to state i, and Vij =Vji, the transi-

tion probability associated with an external field; and W.. = - I wj (ji).

Observe that any one of the rate equations is the negative sum of the other three.

Therefore if we pick any three rate equations, and then eliminate the odd concentration

by using the conservation equation, we obtain, in general, a system of three linearly

independent coupled equations which gives the matrix equation

X = A + AX

where X. is a concentration, and the elements of A and A are dependent upon the total
1 o

number of particles, the w..'s and V.. 's. To remove the constant term, let

B = X - X , AX = -A 0

The components of X 0 can easily be found by Cramer's method. This yields the equa-

tion

]B = AB

Whence we have an ordinary eigenvalue problem. First, we find the eigenvalues

X. (i=l, 2, 3) of A:
1
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IA-X I = 0, Xij. X. 6..1
1J 1 1]

Then the solution is

B = DC

+X .t
where C is a column matrix, with C. = e , and D is a matrix that is such that1

DX = AD

The three independent components of D can be determined by the concentrations given

for t = 0. If these conditions require that Ni(t=0) = N (t=0), then their rate equations

cannot be used to determine the independent components of D.

The rf solution is the solution obtained by using the procedure discussed above for
t = 0. We shall give the solution explicitly for an important case.

For E 4 > E 3 > E 2 > E1, and E 4 - E 1 << kT, we use the approximation

E. - E.
1 3

exp[(Ej-Ei)/kT] z 1 kT

and for i > j,

S Ej - E. E. - E.

ji 1 3 1 kT

because

n. =- 1 + 0(ETE
1 4 kT

Then let

w(ij) ji for j > i

w.. for i > j

Z (ij) = i j

E. -E.
1 j

p(ij) E w(ij) kT

If there is a small rf field-induced Vi., then it follows that w(ij) w(ij) + Vj, but
p(ij) does not change; that is, there is no Vij term included in P(ij). For satura-
tion between levels n and m, we have
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n -1+ A B
lf 4 4 k

N 1nk - 1+ A kB
k 4 k

nm = - -i(A +A ) B-
m 4 8 k kk

where

A Qk = K 3 w(ik) -w(kk)j Z o3(j) + Kw(fk - w(ia) P (jk)

B = L w (ij w(jk) -w (2k)

The experimental results can now be related to the w..'s, for they give values for

either n. - n. = f(t) or (n.-n.)(n-n ) e q u i l i b r i u1 J 1 saturated 1 j equilibrium
J. D. Stettler
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C. MASER CIRCUITS WITH NEGATIVE L AND C

The physical mechanisms that restrict bandwidth in electronic circuits can often be

represented by equivalent lumped reactive circuit elements. The shunt capacitance of

tubes is, in fact, such an element. The finite linewidth of paramagnetic resonance

lines can be represented by an equivalent RLC circuit. Such a representation is

accurate for Lorentz-shaped lines but is only an approximation in the central region for

Gaussian lines.

There is, of course, a large literature on networks for achieving desirable band-

pass characteristics in the presence of these limitations, by means of cascading,

coupled circuits, stagger-tuning, or more sophisticated means. Fano (1), and others,

have discussed the basic theoretical limitations on such networks.

The interesting point about masers is that the natural equivalent circuit for an

inverted paramagnetic resonance line contains not only negative R but also negative L
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and C properties, in the sense that the change of reactance with frequency is reversed.

This fact opens up new possibilities for coupling networks, and permits gain-bandwidth

products in a given situation that are in excess of values to be expected from the line-

width.

The reactance reversal arises from the solution of the equations of motion of the

spin system. For any doubters, it can be readily observed experimentally.

The permeability of a region containing paramagnetic material is given in terms of
the complex susceptibility

1 = o(1+X'-jX")

In the frequency range of a paramagnetic resonance line (if a Lorentzian line is assumed)

the susceptibility can be given in terms of the peak absorption X" and the linewidthmax
1/T 2 . Hence

JXmax
o 1 + jT 2  a

If, for equivalent circuit purposes, we set I, and -VX j - V, the resonance can

be diagrammed as

where 0= axWo and jB j[TG+jB

where G = 1/(4oXax1o ) and jB = j [T 2 AW/(oXaxo)]. If the paramagnetic material is

in a resonant cavity, the circuit becomes

in which the added capacitance, of course, represents electric-field energy, and the

added inductance represents magnetic-field energy in any additional cavity volume

outside the paramagnetic sample.

If the resonance is inverted by three-level pumping or other means, the permeability

becomes
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and the equivalent circuit becomes

Ll 0L = /10~

I CL
where XIax is still taken positive.

If it were not for the Lg term, one

the negative L and C with positive L

could achieve very large bandwidth by tuning out

and C as indicated in the following diagram:

-CG -L -G

As it is, something can still be achieved by resonating the L and adding a second cavity

coupled to the first. With suitable choices of impedance level, the equivalent circuit

for such a two-cavity circuit can be represented as follows:

SECOND
CAVITY

MASER
CAVITY

PARAMAGNETIC
RESONANCE

It is intuitively evident that the largest gain-bandwidth product will be achieved if the

series-L term representing to is minimized relative to the maser material. This means

that the filling factor and the value of x" must be kept as large as possible. For
max

significant use of the negative reactance properties we need XG < B/G, where G and

B refer to the paramagnetic material, and X is the cavity reactance. If we can achieve

a unity filling factor, this expression reduces to

-- |c~-----------
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1
max co To 2

or in terms of the resonance linewidth, Ao para we have

ACo
X,, > para

max c
0

For "pink" ruby at 4 0 K under optimum conditions, this requirement is just about met.

,, para 1
max W 200

Changing the chromium concentration does not give much improvement. Lowering

the concentration reduces " ax' but raising the concentration increases par . Thema x  para
increase is all to the good because it increases the intrinsic bandwidth, but it does

interfere with the types of schemes discussed here.

It is to be expected that advances in maser materials will result in higher X"max
values for a given bandwidth, and hence significance will be given to these circuit con-

siderations. For materials available now, improvements should result from using

higher operating frequency and lower temperature.

Figure VI-1 shows the gain versus frequency that is to be expected from a circuit

of the type shown above with B/G = XG. Figure VI-2 shows a similar plot for a hypo-
thetical material for which B/G = 2XG.

It is to be expected that if the second cavity also contains an inverted paramagnetic

resonance, the over-all performance will be still more improved. Experimental work

along these lines has already been done by F. E. Goodwin, G. E. Moss, and coworkers (2).
Traveling-wave networks utilizing these properties are another possibility.

It would be interesting to obtain basic network theorems concerning the limitation

on circuits containing elements of this kind. The negative L and C properties are
reproducible when only negative R is used in a circuit of the following type:

+C +R I  +L

-R3 T I R 21 =I R 31

+R2

but such a circuit is not realizable with maser materials. Incidentally, these neg-

ative L and C properties do not appear in parametric amplifiers. The broadbanding
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Fig. VI-1.
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Gain versus frequency characteristic for a reactance-compensated
G 2 or Xmaxparamagnetic amplifier with X = B/G or XYmax

(oT2 -l

-3.0 -2.6 -2.2 -1.8 -1.4 -1.0 -0.4 0 0.4 1.0 1.4 1.8 2.2 2.6 3.0

Aw -* ARBITRARY UNITS

Fig. VI-2. Gain versus frequency characteristic for a reactance compensated

paramagnetic amplifier with 2X = B/G 2 , or Xax = 2(woT 2)-I
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possibilities there, as discussed, for example, by H. Seidel (3), are of a more

conventional type.

R. L. Kyhl
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D. A SECONDARY STANDARD FOR ELECTRON PARAMAGNETIC -RESONANCE

EXPERIMENTS

A powdered sample of magnesium oxide (MgO) sealed in glass has been made for use

as a standard in electron paramagnetic -resonance measurements. It has the advantage

of being sufficiently compact (2. 5 cm X 2 mm) to fit into any of the microwave cavities

that are now being used in this laboratory, and it is also chemically stable. The stand-

ard has one absorption line, approximately 2 gauss wide, arising from the paramag-

netic impurity ion Cr in a cubic environment. The narrowness of the line will

interfere very little with any spectrum that is of interest and, since it is a powder, the

line is also independent of magnetic-field orientation.

The standard was calibrated by comparing it with known lines of molecular oxgen,

which was used as a primary standard.

The values of interest for the MgO standard are:

47TX" = 8.0 X 10 - 8

12n = 7.5 X 10 spins

A discussion of the theory and experimental details has been given elsewhere (1).

J. D. Kierstead, P. C. Clapp, M. W. P. Strandberg
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