69 research outputs found

    TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20.

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in Rheumatology following peer review. The version of record:Mohammed Al-Bogami, Jonas Bystrom, Felix Clanchy, Taher E Taher, Pamela Mangat, Richard O Williams, Ali S Jawad, Rizgar A Mageed, TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20, Rheumatology, keaa551, https://doi.org/10.1093/rheumatology/keaa551 is available online at:  https://doi.org/10.1093/rheumatology/keaa551OBJECTIVES: About half of RA patients treated with TNFα inhibitors either do not respond or lose their initial therapeutic response over time. The clinical response is measured by reduction in DAS28, which primarily reflects inflammation. However, other effects of TNFα inhibitors, such as impact on bone erosion, are not assessed by DAS28. We aimed to examine the effect of TNFα inhibitors on bone density, bone biomarkers and cytokine production in responder and non-responder patients and assessed mechanisms of action. METHODS: BMD in the lumbar spine and femur neck of 117 RA patients was measured by DEXA scan. Bone turnover biomarkers CTX, osteoprotegerin (OPG), osteocalcin and RANKL were measured by ELISA. Levels of 16 cytokines in plasma and in tissue culture supernatants of ex vivo T cells were measured by multiplex assays and ELISA. The effect of treatment with TNFα inhibitors on blood mononuclear cell (MNC) differentiation to osteoclast precursors (OCP) was measured flow cytometry and microscopy. RESULTS: TNFα inhibitors improved lumbar spine BMD but had modest effects on blood bone biomarkers, irrespective of patients' clinical response. Blood OCP numbers and the ability of monocytes to differentiate to OCP in vitro declined after treatment. Treatment also reduced RANK expression and IL-20 production. BMD improvement correlated with reduced levels of IL-20 in responder patients. CONCLUSION: This study reveals that TNFα inhibitors reduce lumbar spine bone loss in RA patients irrespective of changes in DAS28. The reduction in bone loss is associated with reduction in IL-20 levels in responder patients

    The effect of bisphosphonate treatment on osteoclast precursor cells in postmenopausal osteoporosis: The TRIO study

    Get PDF
    Bisphosphonates are used to treat bone disease characterised by increased bone resorption by inhibiting the activity of mature osteoclasts, resulting in decreased bone turnover. Bisphosphonates may also reduce the population of osteoclast precursor cells. Our aims were to investigate the effect of bisphosphonates on i) osteoclast precursor cells and ii) circulating cytokine and cytokine receptor in postmenopausal women with osteoporosis compared with healthy premenopausal women. Participants were 62 postmenopausal women (mean age 66) from a 48-week parallel group trial of bisphosphonates. They received ibandronate 150 mg/month (n = 22), alendronate 70 mg/week (n = 19) or risedronate 35 mg/week (n = 21). Fasting blood was collected at baseline, weeks 1 and 48. At baseline, blood was also collected from 25 healthy premenopausal women (mean age 37) to constitute a control group. Peripheral blood mononuclear cells were extracted and stained for CD14, M-CSFR, CD11b and TNFRII receptors. Flow cytometry was used to identify cells expressing CD14 + and M-CSFR + or CD11b + or TNFRII +. RANKL and OPG were measured to evaluate potential mediation of the bisphosphonate effect. After 48 weeks of treatment, there was a decrease in the percentage of cells expressing M-CSFR and CD11b receptors by 53% and 49% respectively (p < 0.01). Cells expressing M-CSFR and CD11b were decreased with ibandronate and risedronate after 48 weeks to the lower part of the premenopausal reference interval. These effects were not significantly different between each of the treatment groups. There was no significant effect on RANKL and OPG throughout the study period. Bisphosphonates inhibit bone resorption in the short-term by direct action on mature osteoclasts. There is also a later effect mediated in part by a reduction in the population of circulating osteoclast precursors

    Methionine Sulfoxide Reductase A (MsrA) Deficient Mycoplasma genitalium Shows Decreased Interactions with Host Cells

    Get PDF
    Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells

    IDO activation, inflammation and musculoskeletal disease

    No full text
    The IDO/kynurenine pathway is now established as a major regulator of immune system function. The initial enzyme, indoleamine 2,3-dioxygenase (IDO1) is induced by IFNγ, while tryptophan-2,3-dioxygenase (TDO) is induced by corticosteroids. The pathway is therefore positioned to mediate the effects of systemic inflammation or stress-induced steroids on tissue function and its expression increases with age. Disorders of the musculoskeletal system are a common feature of ageing and many of these conditions are characterized by an inflammatory state. In inflammatory arthritis and related disorders, kynurenine protects against the development of disease, while inhibition or deletion of IDO1 increases its severity. The long-term regulation of autoimmune disorders may be influenced by the epigenetic modulation of kynurenine pathway genes, with recent data suggesting that methylation of IDO may be involved. Osteoporosis is also associated with abnormalities of the kynurenine pathway, reflected in an inversion of the ratio between blood levels of the metabolites anthranilic acid and 3-hydroxy-anthranilic acid. This review discusses evidence to date on the role of the IDO/kynurenine pathway and the highly prevalent age-related disorders of osteoporosis and rheumatoid arthritis and identifies key areas that require further research

    Disease status in human and experimental arthritis, and response to TNF blockade, is associated with MHC class II invariant chain (CD74) isoform expression

    No full text
    Splice variants of CD74 differentially modulate the activity of cathepsin L (CTSL). As CD74 and CTSL participate in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA), we determined whether splice variants of CD74 could be biomarkers of disease activity. Gene expression was measured in mice with collagen-induced arthritis using quantitative PCR (qPCR). In vitro studies using murine macrophage/DC-lineage cells determined the relative influence of macrophage phenotype on isoform expression and the potential to produce CTSL in response to TNF. CD74 splice variants were measured in human RA synovium and RA patients’ monocytes. In arthritic mice, the expression of the p41 CD74 isoform was significantly higher in severely affected paws compared with unaffected paws or the paws of naïve mice; the p41 isoform significantly correlated with the expression of TNF in arthritic paws. Compared with M2-like macrophages, M1-like macrophages expressed increased levels of CD74 and had higher expression, secretion and activity of CTSL. RA patients that responded to TNF blockade had significantly higher expression levels of CD74 in circulating monocytes after treatment, compared with non-responders. The expression of the human CD74 isoform a was significantly higher in RA synovia, compared with osteoarthritis synovia, and was associated with CSTL enzymatic activity. This study is the first to demonstrate differential expression of the CD74 p41 isoform in an auto-immune disorder and in response to therapy. The differential expression of CD74 splice variants indicates an association, and potentially a mechanistic role, in the pathogenesis of RA

    TNFR signalling and its clinical implications

    No full text
    Tumour necrosis factor-α (TNF-α) is a highly pleiotropic cytokine with effects on multiple pathological and physiological functions via two distinct receptors, TNFR1 and TNFR2. Much of the pro- inflammatory action of TNF-α is mediated by TNFR1 whereas TNFR2 is thought to play an immunoregulatory and tissue protective role. Anti-TNF- α biologics have been extremely successful in treating a number of immune mediated pathologies, including rheumatoid arthritis, ankylosing spondylitis, psoriasis, psoriatic arthritis and inflammatory bowel disease. However, anti-TNF therapy has been shown to induce systemic lupus erythematosus and psoriasis in some patients, and to be deleterious in multiple sclerosis. It is hypothesized that these paradoxical effects of anti-TNF-α are due to inhibition of TNFR2 signalling. In this review, we will focus on the biology and pathophysiologic role of TNF-α and on the therapeutic implications of targeting TNF-α receptor signalling

    T cell activation Rho GTPase activating protein (TAGAP) is upregulated in clinical and experimental arthritis

    No full text
    Genome-wide association studies have identified various susceptibility variants and loci associated with incidence of rheumatoid arthritis (RA) in different populations. One of these is T cell activation Rho GTPase activating protein (TAGAP). The present study sought to measure the expression of TAGAP in RA patients, CD4+ T cells subsets from healthy humans and in mice with collagen-induced arthritis. Peripheral blood mononuclear cells (PBMC) from RA patients and tissues of arthritic mice at different stages of the disease were used for the evaluation of TAGAP mRNA expression. Increased TAGAP expression was observed in RA patients compared to healthy controls, and there were differences in the expression level of TAGAP in the tissues of mice with experimental arthritis. Gene expression in CD4+ T cells from healthy humans was greatest 4 h after activation and protein expression was greatest after 24 h. The expression of TAGAP was not correlated with CD4+ lymphocyte subsets which were enriched for functionally defined subsets (Th17, Treg, Th1), further indicating its utility as an indicator of lymphocyte activation. These findings indicate that increased TAGAP expression is a distinguishing feature of inflammatory disease and further highlight the role of TAGAP in RA susceptibility

    TNFR signalling and its clinical implications

    No full text
    Tumour necrosis factor-α (TNF-α) is a highly pleiotropic cytokine with effects on multiple pathological and physiological functions via two distinct receptors, TNFR1 and TNFR2. Much of the pro- inflammatory action of TNF-α is mediated by TNFR1 whereas TNFR2 is thought to play an immunoregulatory and tissue protective role. Anti-TNF- α biologics have been extremely successful in treating a number of immune mediated pathologies, including rheumatoid arthritis, ankylosing spondylitis, psoriasis, psoriatic arthritis and inflammatory bowel disease. However, anti-TNF therapy has been shown to induce systemic lupus erythematosus and psoriasis in some patients, and to be deleterious in multiple sclerosis. It is hypothesized that these paradoxical effects of anti-TNF-α are due to inhibition of TNFR2 signalling. In this review, we will focus on the biology and pathophysiologic role of TNF-α and on the therapeutic implications of targeting TNF-α receptor signalling
    • …
    corecore