13 research outputs found

    Regional Similarities and NOx‐Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States

    Full text link
    During the 2013 Southern Oxidant and Aerosol Study, Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15–60% higher at CTR than at LRK, but their time series had moderate correlations (r ~ 0.5). However, NOx had no correlation (r = 0.08) between the two sites with nighttime‐to‐early‐morning peaks 3–10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: fossil fuel combustion‐related organic aerosols, mixed organic aerosols, and biogenic organic aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab‐generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx‐related factor (33% of OM) at CTR but a daytime nitrate‐related factor (28% of OM) at LRK. NOx was correlated with BOA and LO‐OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 μg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m3 for CTR‐BOA additional biogenic OM for each 1 ppb increase of NOx.Key PointsAerosol concentration and composition are largely similar at two different forested sites during summertime in the southeastern United StatesFTIR of ambient biogenic SOA factors are similar to isoprene and monoterpene chamber experiment, supporting NOx‐related oxidation pathwaysNOx increases biogenic SOA by 0.5 ± 0.1 μg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m3 for CTR‐BOA for each ppb NOx above 1 ppb at Centreville but not at Look Rock (where NOx was usually below 1 ppb)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/1/jgrd54860-sup-0001-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/2/jgrd54860.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/3/jgrd54860_am.pd

    Regional Similarities and NO_x-Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States

    Get PDF
    During the 2013 Southern Oxidant and Aerosol Study, Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15–60% higher at CTR than at LRK, but their time series had moderate correlations (r ~ 0.5). However, NO_x had no correlation (r = 0.08) between the two sites with nighttime‐to‐early‐morning peaks 3–10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: fossil fuel combustion‐related organic aerosols, mixed organic aerosols, and biogenic organic aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab‐generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NO_x conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx‐related factor (33% of OM) at CTR but a daytime nitrate‐related factor (28% of OM) at LRK. NO_x was correlated with BOA and LO‐OOA for NO_x concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 μg/m^3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m^3 for CTR‐BOA additional biogenic OM for each 1 ppb increase of NO_x

    Regional Similarities and NO_x-Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States

    Get PDF
    During the 2013 Southern Oxidant and Aerosol Study, Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15–60% higher at CTR than at LRK, but their time series had moderate correlations (r ~ 0.5). However, NO_x had no correlation (r = 0.08) between the two sites with nighttime‐to‐early‐morning peaks 3–10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: fossil fuel combustion‐related organic aerosols, mixed organic aerosols, and biogenic organic aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab‐generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NO_x conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx‐related factor (33% of OM) at CTR but a daytime nitrate‐related factor (28% of OM) at LRK. NO_x was correlated with BOA and LO‐OOA for NO_x concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 μg/m^3 for CTR‐LO‐OOA and 1.0 ± 0.3 μg/m^3 for CTR‐BOA additional biogenic OM for each 1 ppb increase of NO_x

    Products and Mechanism of the Reaction of 1‑Pentadecene with NO<sub>3</sub> Radicals and the Effect of a −ONO<sub>2</sub> Group on Alkoxy Radical Decomposition

    No full text
    The linear C<sub>15</sub> alkene, 1-pentadecene, was reacted with NO<sub>3</sub> radicals in a Teflon environmental chamber and yields of secondary organic aerosol (SOA) and particulate β-hydroxynitrates, β-carbonylnitrates, and organic peroxides (β-nitrooxyhydroperoxides + dinitrooxyperoxides) were quantified using a variety of methods. Reaction occurs almost solely by addition of NO<sub>3</sub> to the CC double bond and measured yields of β-hydroxynitrate isomers indicate that 92% of addition occurs at the terminal carbon. Molar yields of reaction products determined from measurements, a proposed reaction mechanism, and mass-balance considerations were 0.065 for β-hydroxynitrates (0.060 and 0.005 for 1-nitrooxy-2-hydroxy­pentadecane and 1-hydroxy-2-nitrooxy­pentadecane isomers), 0.102 for β-carbonylnitrates, 0.017 for organic peroxides, 0.232 for β-nitrooxyalkoxy radical isomerization products, and 0.584 for tetradecanal and formaldehyde, the volatile C<sub>14</sub> and C<sub>1</sub> products of β-nitrooxyalkoxy radical decomposition. Branching ratios for decomposition and isomerization of β-nitrooxyalkoxy radicals were 0.716 and 0.284 and should be similar for other linear 1-alkenes ≥ C<sub>6</sub> whose alkyl chains are long enough to allow for isomerization to occur. These branching ratios have not been measured previously, and they differ significantly from those estimated using structure–activity relationships, which predict >99% isomerization. It appears that the presence of a −ONO<sub>2</sub> group adjacent to an alkoxy radical site greatly enhances the rate of decomposition relative to isomerization, which is otherwise negligible, and that the effect is similar to that of a −OH group. The results provide insight into the effects of molecular structure on mechanisms of oxidation of volatile organic compounds and should be useful for improving structure–activity relationships that are widely used to predict the fate of these compounds in the atmosphere and for modeling SOA formation and aging

    Quantification of Byproduct Formation from Portable Air Cleaners Using a Proposed Standard Test Method

    No full text
    In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 μg h–1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter

    Functional Group Composition of Secondary Organic Aerosol Formed from Ozonolysis of alpha-Pinene Under High VOC and Autoxidation Conditions

    No full text
    The formation of secondary organic aerosol (SOA) from α-pinene ozonolysis has been widely studied, with a recent focus on contributions from highly oxidized multifunctional compounds (HOMs) that have been observed in laboratory and field studies. Most of what is known about the chemical composition of SOA and HOMs, however, consists of molecular formulas and limited molecular structure identification based on mass spectrometric analysis. Here, we characterized the SOA formed from α-pinene ozonolysis using derivatization-spectrophotometric methods to quantify peroxide, carbonyl, carboxyl, ester, and hydroxyl groups. Experiments were conducted over a range of α-pinene concentrations and relative humidities, including regimes in which gas-phase HOMs were detected using NO3– chemical ionization mass spectrometry. Results for experiments conducted with high concentrations of α-pinene were also compared with predictions of a model that employed the Master Chemical Mechanism and included gas-particle and gas-wall partitioning. It appears that gas-phase monomer and dimer products formed through RO2• + RO2•, RO2• + HO2, RO2• isomerization, and stabilized Criegee intermediate + carboxylic acid or water reactions contributed to SOA formation, but that in particles the aldehyde and ketone groups in these compounds were often converted to carboxyl and ester groups through Baeyer–Villiger reactions with hydroperoxides and peroxycarboxylic acids. Evidence also indicates that hydrolysis of dimers containing diacyl peroxide groups contributed to the formation of carboxyl and ester groups, that hydroxyl groups were less abundant in SOA than expected (because of minor gas-phase alkoxy radical isomerization or conversion to an undetectable acetal oligomer), and that gas-to-particle partitioning of small carbonyl compounds may have contributed to SOA
    corecore