4 research outputs found

    Neointimal myofibroblasts contribute to maintaining Th1/Tc1 and Th17/Tc17 inflammation in giant cell arteritis

    No full text
    International audienceVascular smooth muscle cells (VSMCs) have been shown to play a role in the pathogenesis of giant cell arteritis (GCA) through their capacity to produce chemokines recruiting T cells and monocytes in the arterial wall and their ability to migrate and proliferate in the neointima where they acquire a myofibroblast (MF) phenotype, leading to vascular stenosis. This study aimed to investigate if MFs could also impact T-cell polarization. Confocal microscopy was used to analyze fresh fragments of temporal artery biopsies (TABs). Healthy TAB sections were cultured to obtain MFs, which were then treated or not with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and analyzed by immunofluorescence and RT-PCR. After peripheral blood mononuclear cells and MFs were co-cultured for seven days, T-cell polarization was analyzed by flow cytometry. In the neointima of GCA arteries, we observed a phenotypic heterogeneity among VSMCs that was consistent with a MF phenotype (α-SMA + CD90 + desmin + MYH11 +) with a high level of STAT1 phosphorylation. Co-culture experiments showed that MFs sustain Th1/Tc1 and Th17/Tc17 polarizations. The increased Th1 and Tc1 polarization was further enhanced following the stimulation of MFs with IFN-γ and TNF-α, which induced STAT1 phosphorylation in MFs. These findings correlated with increases in the production of IL-1β, IL-6, IL-12 and IL-23 by MFs. Our study showed that MFs play an additional role in the pathogenesis of GCA through their ability to maintain Th17/Tc17 and Th1/Tc1 polarizations, the latter being further enhanced in case of stimulation of MF with IFN-γ and TNF-α

    Human monocyte-derived suppressive cells (HuMoSC) for cell therapy in giant cell arteritis

    No full text
    This article is part of the Research Topic "Novel Therapeutic Options in Large Vessel Vasculitis".International audienceIntroduction The pathogenesis of Giant Cell Arteritis (GCA) relies on vascular inflammation and vascular remodeling, the latter being poorly controlled by current treatments. Methods This study aimed to evaluate the effect of a novel cell therapy, Human Monocyte-derived Suppressor Cells (HuMoSC), on inflammation and vascular remodeling to improve GCA treatment. Fragments of temporal arteries (TAs) from GCA patients were cultured alone or in the presence of HuMoSCs or their supernatant. After five days, mRNA expression was measured in the TAs and proteins were measured in culture supernatant. The proliferation and migration capacity of vascular smooth muscle cells (VSMCs) were also analyzed with or without HuMoSC supernatant. Results Transcripts of genes implicated in vascular inflammation ( CCL2 , CCR2 , CXCR3 , HLADR ), vascular remodeling ( PDGF , PDGFR ), angiogenesis (VEGF) and extracellular matrix composition ( COL1A1 , COL3A1 and FN1 ) were decreased in arteries treated with HuMoSCs or their supernatant. Likewise, concentrations of collagen-1 and VEGF were lower in the supernatants of TAs cultivated with HuMoSCs. In the presence of PDGF, the proliferation and migration of VSMCs were both decreased after treatment with HuMoSC supernatant. Study of the PDGF pathway suggests that HuMoSCs act through inhibition of mTOR activity. Finally, we show that HuMoSCs could be recruited in the arterial wall through the implication of CCR5 and its ligands. Conclusion Altogether, our results suggest that HuMoSCs or their supernatant could be useful to decrease vascular in flammation and remodeling in GCA, the latter being an unmet need in GCA treatment

    Mucosal-associated invariant T cells in giant cell arteritis

    No full text
    International audienceThis study aimed to assess the implication of mucosal-associated invariant T (MAIT) cells in GCA. Blood samples were obtained from 34 GCA patients (before and after 3 months of treatment with glucocorticoids (GC) alone) and compared with 20 controls aged >50 years. MAIT cells, defined by a CD3(+)CD4(-)TCRγδ(-)TCRVα7.2(+)CD161(+) phenotype, were analyzed by flow cytometry. After sorting, we assessed the ability of MAIT cells to proliferate and produce cytokines after stimulation with anti CD3/CD28 microbeads or IL-12 and IL-18. MAIT were stained in temporal artery biopsies (TAB) by confocal microscopy. MAIT cells were found in the arterial wall of positive TABs but was absent in negative TAB. MAIT frequency among total αβ-T cells was similar in the blood of patients and controls (0.52 vs. 0.57%; P = 0.43) and not modified after GC treatment (P = 0.82). Expression of IFN-γ was increased in MAIT cells from GCA patients compared to controls (44.49 vs. 32.9%; P = 0.029), and not modified after 3 months of GC therapy (P = 0.82). When they were stimulated with IL-12 and IL-18, MAIT from GCA patients produced very high levels of IFN-γ and displayed a stronger proliferation compared with MAIT from controls (proliferation index 3.39 vs. 1.4; P = 0.032). In GCA, the functional characteristics of MAIT cells are modified toward a pro-inflammatory phenotype and a stronger proliferation capability in response to IL-12 and IL-18, suggesting that MAIT might play a role in GCA pathogenesis. Our results support the use of treatments targeting IL-12/IL-18 to inhibit the IFN-γ pathway in GCA

    Improvement of Treg immune response after treatment with tocilizumab in giant cell arteritis

    No full text
    International audienceOBJECTIVES: To study the percentage, suppressive function and plasticity of Treg in giant cell arteritis (GCA), and the effects of glucocorticoids and tocilizumab. METHODS: Blood samples were obtained from 40 controls and 43 GCA patients at baseline and after treatment with glucocorticoids + IV tocilizumab (n = 20) or glucocorticoids (n = 23). Treg percentage and phenotype were assessed by flow cytometry. Suppressive function of Treg was assessed by measuring their ability to inhibit effector T-cell (Teff) proliferation and polarisation into Th1 and Th17 cells. RESULTS: Treg (CD4(+)CD25(high)FoxP3(+)) frequency in total CD4(+) T cells was decreased in active GCA patients when compared to controls (2.5% vs. 4.7%, P < 0.001) and increased after treatment with tocilizumab but worsened after treatment with glucocorticoids alone. Treg lacking exon 2 of FoxP3 were increased in GCA patients when compared to controls (23% vs. 10% of total Treg, P = 0.0096) and normalised after treatment with tocilizumab + glucocorticoids but not glucocorticoids alone. In GCA patients, Treg were unable to control Teff proliferation and induced ˜50% increase in the amount of IL-17(+) Teff, which was improved after in vitro blockade of the IL-6 pathway by tocilizumab. CONCLUSION: This study reports quantitative and functional disruptions in the regulatory immune response of GCA patients and demonstrates that, unlike glucocorticoids, tocilizumab improves Treg immune response
    corecore