16 research outputs found

    Encapsulation Techniques and Traffic Characterisation of an Ethernet-Based 5G Fronthaul

    Get PDF
    This paper first overviews how, in the 5G Next Generation Radio Access Network (NG-RAN), the Next generation NodeB (gNB) functions are split into Distributed Unit (DU) and Central Unit (CU). Then it describes the proposed fronthaul transport solutions, such as Common Packet Radio Interface (CPRI), eCPRI, IEEE P1914.3 and their relationship with the Ethernet protocol. Finally, a characterisation of the traffic generated by the fronthaul is presented. Such characterisation may guide in the selection of the right network for fronthaul transport.This work has been partially funded by the EU H2020 “5G-Transformer” Project (grant no. 761536)

    Impact of Virtualization Technologies on Virtualized RAN Midhaul Latency Budget: A Quantitative Experimental Evaluation

    Get PDF
    In the Next Generation Radio Access Network (NGRAN) defined by 3GPP for the fifth generation of mobile communications (5G), the next generation NodeB (gNB) is split into a Radio Unit (RU), a Distributed Unit (DU), and a Central Unit (CU). RU, DU, and CU are connected through the fronthaul (RU-DU) and midhaul (DU-CU) segments. If the RAN is also virtualised RAN (VRAN), DU and CU are deployed in virtual machines or containers. Different latency and jitter requirements are demanded on the midhaul according to the distribution of the protocol functions between DU and CU. This study shows that, in VRAN, the virtualisation technologies, the functional split option, and the number of elements deployed in the same computational resource affect the latency budget available for the midhaul. Moreover, it provides an expression for the midhaul allowable latency as a function of the aforementioned parameters. Finally, it shows that, the virtualised DUs featuring a lower layer split option shall be deployed not in the sameThis work has been partially funded by the EC H2020 “5G-Transformer” Project (grant no. 761536)

    Remote Control of a Robot Rover Combining 5G, AI, and GPU Image Processing at the Edge

    Get PDF
    This paper has been presented at 2020 Optical Fiber Communications Conference and Exhibition (OFC)The demo shows the effectiveness of a low latency remote control based on 5G and image processing at the edge exploiting artificial intelligence and GPUs to make a robot rover slalom between posts.This work has been partially supported by TIM under the Cooperation Agreement with Scuola Superiore Sant’Anna for the 5G MISE Trial in Bari and Matera 2018-2022 and the EU Commission through the 5GROWTH project (grant agreement no. 856709)

    The economic impact of moderate stage Alzheimer's disease in Italy: Evidence from the UP-TECH randomized trial

    Get PDF
    Background: There is consensus that dementia is the most burdensome disease for modern societies. Few cost-of-illness studies examined the complexity of Alzheimer's disease (AD) burden, considering at the same time health and social care, cash allowances, informal care, and out-of-pocket expenditure by families. Methods: This is a comprehensive cost-of-illness study based on the baseline data from a randomized controlled trial (UP-TECH) enrolling 438 patients with moderate AD and their primary caregiver living in the community. Results: The societal burden of AD, composed of public, patient, and informal care costs, was about �20,000/yr. Out of this, the cost borne by the public sector was �4,534/yr. The main driver of public cost was the national cash-for-care allowance (�2,324/yr), followed by drug prescriptions (�1,402/yr). Out-of-pocket expenditure predominantly concerned the cost of private care workers. The value of informal care peaked at �13,590/yr. Socioeconomic factors do not influence AD public cost, but do affect the level of out-of-pocket expenditure. Conclusion: The burden of AD reflects the structure of Italian welfare. The families predominantly manage AD patients. The public expenditure is mostly for drugs and cash-for-care benefits. From a State perspective in the short term, the advantage of these care arrangements is clear, compared to the cost of residential care. However, if caregivers are not adequately supported, savings may be soon offset by higher risk of caregiver morbidity and mortality produced by high burden and stress. The study has been registered on the website www.clinicaltrials.org (Trial Registration number: NCT01700556). Copyright � International Psychogeriatric Association 2015

    Socioeconomic Predictors of the Employment of Migrant Care Workers by Italian Families Assisting Older Alzheimer's Disease Patients: Evidence from the Up-Tech Study

    Get PDF
    Background: The availability of family caregivers of older people is decreasing in Italy as the number of migrant care workers (MCWs) hired by families increases. There is little evidence on the influence of socioeconomic factors in the employment of MCWs. Method: We analyzed baseline data from 438 older people with moderate Alzheimer's disease (AD), and their family caregivers enrolled in the Up-Tech trial. We used bivariate analysis and multilevel regressions to investigate the association between independent variables - education, social class, and the availability of a care allowance - and three outcomes - employment of a MCW, hours of care provided by the primary family caregiver, and by the family network (primary and other family caregivers). Results: The availability of a care allowance and the educational level were independently associated with employing MCWs. A significant interaction between education and care allowance was found, suggesting that more educated families are more likely to spend the care allowance to hire a MCW. Discussion: Socioeconomic inequalities negatively influenced access both to private care and to care allowance, leading disadvantaged families to directly provide more assistance to AD patients. Care allowance entitlement needs to be reformed in Italy and in countries with similar long-term care and migration systems. � 2015 The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved

    Exploiting PDCP filtering for implementing capacity efficient virtual RAN recovery

    No full text
    This study proposes to jointly utilize virtual distributed unit (vDU) and central unit (vCU) hot backup and Packet Data Convergence Protocol (PDCP) filtering to shorten the fronthaul connection recovery time upon virtualized function failure and reduce the required backup capacity during normal working conditions. Experimental results show that the proposed method achieves about three seconds fronthaul recovery time and reduces up to 95% the fronthaul backup connection capacity requirements

    P4 edge node enabling stateful traffic engineering and cyber security

    No full text
    Next-generation edge nodes interfacing innovative IT clusters, 5G fronthaul, and internet of things (IoT) gateways to the optical metro/core network will require advanced and dynamic online quality of service (QoS) per-flow traffic treatment, assuring ultra-low latency requirements. However, current software-defined networking (SDN) implementations (e.g., OpenFlow) do not support forwarding procedures based on the network state, profile variations, and the history of flowstatistics at the node level. Currently, such procedures require intervention by the SDN controller, leading to scalability issues and additional latency in data plane forwarding. Moreover, severe security challenges are expected to affect such nodes and threaten IT resources. Thus, increasing bandwidths will require direct deep packet inspection to avoid involvement of the SDN controller, as performed currently, or dedicated and costly security systems. This paper leverages on the potential of the programming protocol-independent packet processors (P4) open source language, recently introduced by the inventors of OpenFlow, to program the data plane structure and behavior of an SDN switch. P4 is able to instantiate custom pipelines and stateful objects, enabling complex workflows, user-defined protocols/headers, and finite state machines enforcement. Moreover, P4 allows portable implementations over different hardware targets, thus opening the way to open source fully programmable devices. Special effort is dedicated to motivate and apply P4 within a multilayer edge scenario, proposing the architecture and the applicability of an SDN P4-enabled packet-over-optical node. Moreover, three specific multilayer use cases covering dynamic traffic engineering (TE) (e.g., traffic offload and optical bypass) and cybersecurity (e.g., distributed denial of service port scan) are discussed and addressed through P4-based solutions. Experimental evaluations have been conducted over a multilayer SDN network exploiting reference P4 software switches (i.e., the behavioralmodel version 2, or BMV2) and field-programmable gate arrays (FPGAs) at 10 gigabit Ethernet optical interfaces. Extensive results report effective dynamic TE and cybersecurity mitigation enforcement at P4 switches without any controller intervention, showing excellent scalability performance and overall latencies practically in line with current commercial OpenFlow switches
    corecore