677 research outputs found

    Quantum Bose Josephson Junction with binary mixtures of BECs

    Full text link
    We study the quantum behaviour of a binary mixture of Bose-Einstein condensates (BEC) in a double-well potential starting from a two-mode Bose-Hubbard Hamiltonian. We focus on the small tunneling amplitude regime and apply perturbation theory up to second order. Analytical expressions for the energy eigenvalues and eigenstates are obtained. Then the quantum evolution of the number difference of bosons between the two potential wells is fully investigated for two different initial conditions: completely localized states and coherent spin states. In the first case both the short and the long time dynamics is studied and a rich behaviour is found, ranging from small amplitude oscillations and collapses and revivals to coherent tunneling. In the second case the short-time scale evolution of number difference is determined and a more irregular dynamics is evidenced. Finally, the formation of Schroedinger cat states is considered and shown to affect the momentum distribution.Comment: 14 pages, 4 figure

    Parasitic pumping currents in an interacting quantum dot

    Full text link
    We analyze the charge and spin pumping in an interacting dot within the almost adiabatic limit. By using a non-equilibrium Green's function technique within the time-dependent slave boson approximation, we analyze the pumped current in terms of the dynamical constraints in the infinite-U regime. The results show the presence of parasitic pumping currents due to the additional phases of the constraints. The behavior of the pumped current through the quantum dot is illustrated in the spin-insensitive and in the spin-sensitive case relevant for spintronics applications

    Critical behaviour of a spin-tube model in a magnetic field

    Full text link
    We show that the low-energy physics of the spin-tube model in presence of a critical magnetic field can be described by a broken SU(3) spin chain. Using the Lieb-Schultz-Mattis Theorem we characterize the possible magnetization plateaus and study the critical behavior in the region of transition between the plateaus m=1/2 and m=3/2 by means of renormalization group calculations performed on the bosonized effective continuum field theory. We show that in certain regions of the parameter space of the effective theory the system remains gapless, and we compute the spin-spin correlation functions in these regions. We also discuss the possibility of a plateau at m=1, and show that although there exists in the continuum theory a term that might cause the appearance of a plateau there, such term is unlikely to be relevant. This conjecture is proved by DMRG techniques. The modifications of the three-leg ladder Hamiltonian that might show plateaus at m =1,5/6,7/6 are discussed, and we give the expected form of correlation functions on the m=1 plateau.Comment: RevTeX, 43 pages, 5 EPS figure

    Kecerdasan Emosional dan Kecerdasan Spiritual Meningkatkan Kompetensi Sosial Guru

    Full text link
    Teacher as a professional educational is demanded to have a set of competence in carrying out the daily tasks. One of the competences is social competence. The social competence of teachers is that teachers have an objective, inclusive and non discriminative attitude, well-mannered eitherin speech or in act, capable in communicating verbally, writtenly and gesture. In addition, teachers have to coordinate with the students, other fellow teachers, educational staff, student's parents as well asthe society. They must also be able to adapt with the community. This study aims to determine the relationship between emotional intelligence and spiritual intelligence work with the social competence of teachers in Vocational Schools of Gorontalo City. The result of multiple correlation coefficient which showed between emotional intelligence and spiritual intelegence toward social competence. This means that the better the emotional and spiritual intelligence of teacher, the better the effect of the social competence of teachers will be. Keywords: emotional intelligence, spiritual intelligence, teachers, social competenc

    Temperature and doping dependence of normal state spectral properties in a two-orbital model for ferropnictides

    Full text link
    Using a second-order perturbative Green's functions approach we determined the normal state single-particle spectral function A(k⃗,ω)A(\vec{k},\omega) employing a minimal effective model for iron-based superconductors. The microscopic model, used before to study magnetic fluctuations and superconducting properties, includes the two effective tight-binding bands proposed by S.Raghu et al. [Phys. Rev. B 77, 220503 (R) (2008)], and intra- and inter-orbital local electronic correlations, related to the Fe-3d orbitals. Here, we focus on the study of normal state electronic properties, in particular the temperature and doping dependence of the total density of states, A(ω)A(\omega), and of A(k⃗,ω)A(\vec{k},\omega) in different Brillouin zone regions, and compare them to the existing angle resolved photoemission spectroscopy (ARPES) and previous theoretical results in ferropnictides. We obtain an asymmetric effect of electron and hole doping, quantitative agreement with the experimental chemical potential shifts as a function of doping, as well as spectral weight redistributions near the Fermi level as a function of temperature consistent with the available experimental data. In addition, we predict a non-trivial dependence of the total density of states with the temperature, exhibiting clear renormalization effects by correlations. Interestingly, investigating the origin of this predicted behaviour by analyzing the evolution with temperature of the k-dependent self-energy obtained in our approach, we could identify a number of specific Brillouin zone points, none of them probed by ARPES experiments yet, where the largest non-trivial effects of temperature on the renormalization are present.Comment: Manuscript accepted in Physics Letters A on Feb. 25, 201

    Normal state electronic properties of LaO1−x_{1-x}Fx_{x}BiS2_{2} superconductors

    Full text link
    A good description of the electronic structure of BiS2_{2}-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features from angle resolved photoemission spectroscopy (ARPES) in LaO1−x_{1-x}Fx_{x}BiS2_{2}, we used a minimal microscopic model to study their low energy properties. It includes the two effective tight-binding bands proposed by Usui et al [Phys.Rev.B 86, 220501(R)(2012)], and we added moderate intra- and inter-orbital electron correlations related to Bi-(pYp_{Y}, pXp_{X}) and S-(pYp_{Y}, pXp_{X}) orbitals. We calculated the electron Green's functions using their equations of motion, which we decoupled in second-order of perturbations on the correlations. We determined the normal state spectral density function and total density of states for LaO1−x_{1-x}Fx_{x}BiS2_{2}, focusing on the description of the k-dependence, effect of doping, and the prediction of the temperature dependence of spectral properties. Including moderate electron correlations, improves the description of the few experimental ARPES and soft X-ray photoemission data available for LaO1−x_{1-x}Fx_{x}BiS2_{2}. Our analytical approximation enabled us to calculate the spectral density around the conduction band minimum at k⃗0=(0.45π,0.45π)\vec{k}_{0}=(0.45\pi,0.45\pi), and to predict the temperature dependence of the spectral properties at different BZ points, which might be verified by temperature dependent ARPES.Comment: 9 figures. Manuscript accepted in Physica B: Condensed Matter on Jan. 25, 201

    Noise-assisted Thouless pump in elastically deformable molecular junctions

    Full text link
    We study a Thouless pump realized with an elastically \textit{deformable quantum dot} whose center of mass follows a non-linear stochastic dynamics. The interplay of noise, non-linear effects, dissipation and interaction with an external time-dependent driving on the pumped charge is fully analyzed. The results show that the quantum pumping mechanism not only is not destroyed by the force fluctuations, but it becomes stronger when the forcing signal frequency is tuned close to the resonance of the vibrational mode. The robustness of the quantum pump with temperature is also investigated and an exponential decay of the pumped charge is found when the coupling to the vibrational mode is present. Implications of our results for nano-electromechanical systems are also discussed.Comment: 2 Appendices and figures adde

    An efficient consistency management algorithm for real-time mobile collaboration

    Get PDF
    Real time mobile collaboration involves two or more co-workers operating concurrently on a shared document using independent mobile devices. The replicated architecture is attractive for such applications since it does not rely on a central server and a user can continue to work on his or her own local document replica even during disconnection period. Several consistency management algorithms have been proposed, however the resource usage of such algorithms, which is critical in a mobile environment, has not been formally studied. Mobile devices are constrained in terms of memory and processing power, and operate in networking environments with limited bandwidth and transient connectivity. Therefore, algorithms that use resources more effectively improve the quality of the user experience in a mobile environment. ISO 9126-1 considers software to be efficient if it provides a balance between performance, and resource utilisation while performing its function. Therefore, this paper evaluates the efficiency of existing techniques, and proposes a more efficient consistency management algorithm. The new algorithm leverages existing techniques which are shown to be efficient and incorporates a novel history management strategy called partial history copy. Different combinations of these techniques are tested and compared to determine which one is most efficient and thus suitable for mobile usage

    Off-diagonal correlations in a one-dimensional gas of dipolar bosons

    Full text link
    We present a quantum Monte Carlo study of the one-body density matrix (OBDM) and the momentum distribution of one-dimensional dipolar bosons, with dipole moments polarized perpendicular to the direction of confinement. We observe that the long-range nature of the dipole interaction has dramatic effects on the off-diagonal correlations: although the dipoles never crystallize, the system goes from a quasi-condensate regime at low interactions to a regime in which quasi-condensation is discarded, in favor of quasi-solidity. For all strengths of the dipolar interaction, the OBDM shows an oscillatory behavior coexisting with an overall algebraic decay; and the momentum distribution shows sharp kinks at the wavevectors of the oscillations, Q=±2πnQ = \pm 2\pi n (where nn is the atom density), beyond which it is strongly suppressed. This \emph{momentum filtering} effect introduces a characteristic scale in the momentum distribution, which can be arbitrarily squeezed by lowering the atom density. This shows that one-dimensional dipolar Bose gases, realized e.g. by trapped dipolar molecules, show strong signatures of the dipolar interaction in time-of-flight measurements.Comment: 10 pages, 6 figures. v2: fixed a mistake in the comparison with Ref. 9, as well as several typos. Published versio
    • …
    corecore