
An Efficient Consistency Management Algorithm for Real-Time

Mobile Collaboration

Sandy Citro, Jim McGovern, Caspar Ryan

School of Computer Science and Information Technology

RMIT University

Melbourne, Australia

scitro@cs.rmit.edu.au, jim.mcgovern@rmit.edu.au, caspar@cs.rmit.edu.au

Abstract

Real time mobile collaboration involves two or more
co-workers operating concurrently on a shared document
using independent mobile devices. The replicated archi-
tecture is attractive for such applications since it does not
rely on a central server and a user can continue to work
on his or her own local document replica even during dis-
connection period. Several consistency management al-
gorithms have been proposed, however the resource usage
of such algorithms, which is critical in a mobile environ-
ment, has not been formally studied.

Mobile devices are constrained in terms of memory
and processing power, and operate in networking envi-
ronments with limited bandwidth and transient connec-
tivity. Therefore, algorithms that use resources more ef-
fectively will improve the quality of the user experience
in a mobile environment. ISO 9126-1 [3] considers soft-
ware to be efficient if it provides a balance between per-
formance, and resource utilisation while performing its
function.

Therefore, this paper evaluates the efficiency of exist-
ing techniques, and proposes a more efficient consistency
management algorithm. The new algorithm leverages ex-
isting techniques which are shown to be efficient and in-
corporates a novel history management strategy called
partial history copy.Different combinations of these tech-
niques are tested and compared to determine which one
is most efficient and thus suitable for mobile usage.

1. Introduction

Real time collaboration involves two or more users,
at different sites, concurrently working on a shared
workspace such as a UML diagram, a multimedia arte-
fact or a text based document. In a collaboration ses-
sion, users work on a local device which communicates

with the individual devices of other users via message
passing. Each user interacts with the shared document
(as it appears on his or her device) with changes prop-
agated to other users as soon as possible so as to re-
duce the possibility of update conflicts.

The architecture of a real-time collaboration system
can be either centralised or replicated.

In a centralised architecture, only a single copy of
the document exists on a central server, with partic-
ipants updating it directly in a synchronous manner.
This approach does however have a number of draw-
backs. Firstly, a central server must be present and
running at all times, thus introducing a single point of
failure whereby the entire collaboration session ceases
when the server is down. Secondly, if an individual de-
vice is unable to connect to the server, whether due to
total network failure or low bandwidth or sporadic dis-
connection, that user cannot participate in the session.
Finally, depending on the implementation, the network
usage may be high since all operations must be directed
through a central server.

In a replicated architecture, a user interacts with the
local document replica by applying local operations to
the document, for example, an insertion operation is
generated when a character is typed in a text based
document. This operation is then broadcast directly to
the other participants as a remote operation, which is
processed at the remote sites before being applied to
their document replicas to ensure that operations are
executed in such a way so as to preserve the original
intention of the user who generated the operation. In
this architecture, there is no central server and each de-
vice has a replica of the document. Therefore, there is
no single point of failure and if a site is disconnected,
that user can continue working on his or her own lo-
cal replica while other sites collaborate with all of the
sites to which they have connectivity. Upon reconnec-
tion, the previously disconnected site re-synchronise

E72964
Typewritten Text

E72964
Typewritten Text
Citation:Citro, S, McGovern, J and Ryan, C 2005, 'An efficient consistency management algorithm for real-time mobile collaboration',in K.-Y. Cai et al. (ed.) Proceedings of the Fifth International Conference on Quality Software (QSIC2005), Melbourne,19-20 September 2005.

E72964
Typewritten Text

E72964
Typewritten Text

with other sites to bring its document up to date. This
ability to work without a central server, and to oper-
ate during disconnection, makes the replicated archi-
tecture attractive for mobile groupware. However, im-
plementing replicated consistency management on re-
source constrained mobile devices is challenging, since
existing algorithms [1, 4, 9–11, 13, 15, 16] do not explic-
itly consider resource utilisation in terms of process-
ing power, memory usage and the resultant effect on
power consumption.

ISO 9126-1 [3] considers efficiency as a quality at-
tribute comprising the capability of software to pro-
vide appropriate response and processing times (perfor-
mance sub-characteristics) and the capability of soft-
ware to use appropriate amounts and types of re-
source during its execution (resource utilisation sub-
characteristics). Therefore, a consistency management
algorithm for mobile environments should carefully bal-
ance these considerations as discussed in the following
sections, an outline of which is given below.

Section 2 reviews existing work and evaluates tech-
niques proposed by previous researchers. Section 3
presents a new consistency management algorithm,
derived from previous work, which aims to provide
greater efficiency within a mobile collaboration envi-
ronment. Section 4 presents the findings of the simu-
lation experiments conducted to measure the perfor-
mance of the new algorithm and finally, Section 5 ends
with a summary and conclusion.

2. Related Works

Consistency criteria can be classified into two
classes, strong consistency and weak consistency [2].
Strong consistency prevents replicas from diverg-
ing by not allowing conflicting operations to be per-
formed concurrently. This can be achieved by using
locks [7, 10, 12] where a user has to obtain a lock be-
fore making a change on the shared object to ensure
that no one else can make changes. However, these al-
gorithms have several drawbacks. Firstly, they do not
promote real-time concurrency since specific parts
of the document can only be modified by one per-
son at a time. Secondly, if a device acquires a lock
on part of the document and then becomes unexpect-
edly disconnected (as commonly occurs in a mobile en-
vironment), no other site can access that part of the
document for an indefinite period. Thirdly, the lock-
ing mechanism requires either a central server to man-
age the lock, or the additional overhead of message
exchange to ensure that all sites agree on who ac-
quires a lock on a particular part of the document
at any given time. On the other hand, weak con-

sistency allows divergence but might never enforce
convergence. Therefore, this is not applicable in collab-
oration applications when the consistency of replicas
is important.

Alternatively, another consistency class can be
adopted where replicas are allowed to be temporar-
ily divergent, and convergence is enforced by propagat-
ing the changes as soon as possible and by utilising an
algorithm to ensure the conflicting operations are re-
solved in a consistent manner at all sites. This tech-
nique, called operation transformation, was first in-
troduced by dOPT [1] and soon followed by other
work such as adOPTed [9], GOT [15], GOTO [13],
SOCT2 [11], SOCT3 [16], and SOCT4 [16]. Users are
allowed to modify their respective local replicas con-
currently with each update resulting in a local op-
eration which is applied to the local replica before
being broadcast as a remote operation to other partic-
ipants. When a remote operation arrives at a certain
site, that site performs an operation transforma-
tion to create a local operation variant which pre-
serves the intention of the user who generated the
original operation while resolving any conflicts and en-
suring documents remain consistent across sites.
This is done by transforming the incoming opera-
tion against all other operations that are concurrent
to it. Lamport [5] defines causal precedence and con-
currency as follows:

Definition 2.1. Causal precedence relation ”→”.
Let opi and opj be operations generated at sites Si and Sj

respectively, opi causally precedes opj (opi → opj) iff:

• Si = Sj and opi is generated before opj, or
• Si 6= Sj and opj is generated by site Sj after opi is

received by Sj.

Definition 2.2. Concurrent operations relation ”||”.
Given two operations opi and opj, generated at sites Si

and Sj respectively, opi and opj are concurrent (opi||opj)
if opi 6→ opj and opj 6→ opi.

In the dOPT [1] algorithm, an incoming remote op-
eration is transformed against its concurrent operations
before being applied to the document and stored into
the operation history. The major drawback of dOPT
is that it naively transforms every remote operation
against concurrent operations in the history without
taking user intention into account. Guerraoui et al. [2]
prove that dOPT is incapable of maintaining document
consistency under some scenarios, particularly when
operations are not generated at the same state. Res-
sel et al. [9] proposed the adOPTed algorithm to solve
this problem by constructing an N-dimensional inter-
action graph (where N is the number of collaborating
sites) that contains all operations in various possible

transformation variants. This approach, however, re-
quires each site to construct a new graph every time a
remote operation is received and thus as the number of
concurrent operations and participating sites increases,
so does the complexity of the graph. This makes it dif-
ficult to manage the graph over long collaboration ses-
sions, particularly on resource constrained mobile de-
vices. Alternatively, GOTO [13] and SOCT2 [11] try to
solve this problem by ensuring that incoming remote
operations are transformed against concurrent opera-
tions as if they were generated at the same state. This is
done using a backward transformation technique as in-
troduced by Prakash et al. [8], which separates the his-
tory into two sequences as shown in Figure 1. The first
sequence consists of preceding operations, the second of
concurrent operations, with the remote operation be-
ing transformed against the latter sequence. However,
this leads to inconsistent states under some scenarios
when concurrent operations are not performed in the
same order at all sites [16].

Figure 1. Separating the History.

GOT [15] and SOCT3 [16] implement a total order-
ing mechanism so that all operations are eventually ex-
ecuted in the same order at all sites. In GOT, when a
remote operation is received, the operations that pre-
cede it are undone. The remote operation is then exe-
cuted, followed by the execution of the operations that
were previously undone after transforming them to in-
clude the effect of the newly executed remote operation.
This algorithm is computationally expensive since it re-
quires a large number of undo and redo operations (and
their resulting transformations) and is thus not imme-
diately suitable for use on mobile devices with limited
processing power and battery life. In contrast, SOCT3
does not involve undo and redo operations, but rather,
like SOCT2, when a remote operation is received, it is
transformed against all concurrent operations follow-
inghistory separation. Once the remote operation is ex-
ecuted, the history is rearranged such that the remote
operation is positioned at its correct place in the his-
tory based on the total ordering scheme.

SOCT3 with its use of history separation, total or-

dering and operation shifting, serves as the most suit-
able basis for application in a mobile context. Never-
theless, it has a number of drawbacks. Firstly, it re-
lies on a central sequencer for its total ordering mecha-
nism. Secondly, it does not control history size and thus
the longer a collaboration session runs, the more mem-
ory and/or storage space is consumed. Finally, the his-
tory separation step requires that the whole history be
copied, with the separation performed on the copy so
that the original history is left intact. This results in in-
creased memory usage which, as discussed previously,
is problematic on constrained mobile devices.

The first problem can be resolved by using an ex-
isting non-centralised total ordering strategy such as
the State Vector (SV) technique as implemented by
GOT [15], or the Lamport logical clock (LC) approach
[5] as used by ORESTE [4]. The problem of history
size can be addressed by implementing a history trim-
ming algorithm that prevents the history from grow-
ing indefinitely. Such a technique has been introduced
in a non-mobile context by Sun et al. [14]. However,
since this algorithm can be applied independently at
each site, it appears to be suitable for use in a mobile
context. While these initial two problems can be po-
tentially resolved using existing techniques, the prob-
lem of history copying has not been addressed and thus
a novel technique called Partial History Copy is intro-
duced to minimize the size of the history copy. These
strategies are incorporated into a mobile collaboration
algorithm which is presented and evaluated in this pa-
per, with each specific technique discussed in more de-
tail in the following section.

3. Algorithm Design Alternatives

As discussed in Section 2, there are three major is-
sues with existing algorithms that should be addressed
in a consistency management algorithm for real-time
mobile applications. These are total ordering mecha-
nism, history copy and history trimming.

3.1. Total Ordering Mechanism

As discussed previously the central sequencer ap-
proach used in SOCT3 and SOCT4 is not suitable
for mobile applications because it introduces a single
point of failure. Two existing candidate mechanisms for
achieving total ordering, that do not rely on a central
server or the synchronisation of clocks, are Lamport’s
Logical Clock as used by ORESTE [4] and the State
Vector (SV) technique as implemented by GOT [15].
These two techniques are described below.

3.1.1. Lamport’s Logical Clock Each operation is
timestamped with a logical clock rather than a physi-
cal clock. Each site Si maintains a logical clock Ci and
whenever site Si generates an operation opj , opj will be
timestamped C(opj) where C(opj) = Ci. Ci is incre-
mented after assigning a clock to an operation to en-
sure the preceding operation has a lower logical clock
than the following operation. A total ordering relation
”≺” of operations is defined as follows:

Definition 3.1. Total ordering relation ”≺”.
Let opi be generated by Si and opj by Sj, then opi ≺ opj

if and only if:

• Ci(opi) < Cj(opj), or
• Ci(opi) = Cj(opj) and Si < Sj.

3.1.2. State Vector A state vector, based on the
clock vector introduced by Mattern [6], is an N -sized
vector where N is the number of the participating
sites. Each site Si maintains a state vector VSi

. VSi
=

(VSi
[1], VSi

[2], . . . , VSi
[N]) where VSi

[j] holds the num-
ber of operations generated by site Sj that have been
executed by site Si. If operation opi is generated by site
Si, then opi will bear a state vector Vopi

, which is equiv-
alent to VSi

right before Si generates opi. Sun et al. [15]
defines a total ordering relation ”≺” of operations
based on sum(Vop) as follows:

Definition 3.2. Total ordering relation ”≺”.
Given two operations opi and opj, generated at sites Si

and Sj respectively, then opi ≺ opj iff:

• sum(Vopi
) < sum(Vopj

), or
• sum(Vopi

) = sum(Vopj
) and Si < Sj.

The state vector technique has been used in the al-
gorithm to preserve causality , therefore using the state
vector for total ordering does not increase overall mem-
ory usage. However, since the total ordering relation
involves a summation of the elements of the state vec-
tor, the computational intensity must be considered
in a mobile context. On the other hand, using Lam-
port’s logical clock as a total ordering mechanism will
increase memory usage as each site and each operation
need to maintain the logical clock. Given the poten-
tial advantages and disadvantages of the two total or-
dering schemes, we consider this in the empirical tests
of Section 4 in order to determine which approach is
the most suitable for use in a mobile context.

3.2. History Trimming

An operation opi in the history is no longer required
when there are no longer future operations that are
concurrent to or precede it. This requires a site Sj to

know that all other sites have already executed opi be-
fore opi can be deleted from the history of Sj . To do
this, each site maintains information about the state
vectors of all other sites. Let SV Ti[j](1 ≤ j ≤ N) be
the state vector of site Sj as known by site Si, and
SV Ti[j][k] be the number of operations generated from
site Sk that have been executed by site Sj as known by
site Si. To ensure SV Ti[j] is up to date, whenever a re-
mote operation op from site Sj is executed at site Si,
SV Ti[j] is updated to be equal to Vop.

Let op be an operation generated from site Sk. Sites
that have already executed op will have VS [k] ≥ Vop[k],
thus all operations that op precedes will have V [k] ≥
Vop[k]. If site Si receives an operation opx from site Sy,
site Si will know that site Sy has already executed op

if Vopx
[k] ≥ Vop[k]. Therefore, if an operation op is gen-

erated from site Sk, op can be deleted from the history
of Si if Vop[k] ≤ SVi[j][k](∀j : 1 ≤ j ≤ N).

This history trimming technique requires additional
memory to maintain SV T and more processing cy-
cles to perform the trimming operation. However, over
time, this technique is expected to both reduce mem-
ory usage and improve performance due to the smaller
size of the history being operated on.

3.3. History Copy

Let HSi
be the operation history of site Si and

HSi
[j] be the j-th operation in HSi

. Operations in the
history are totally ordered such that HSi

[j] ≺ HSi
[j +

1]. When a remote operation op arrives at Si, the his-
tory separation step of SOCT3 arranges the history
into two sequences, seq1 and seq2 (HSi

= seq1 + seq2).
All operations in seq1 precede op and all operations
in seq2 are concurrent to op (Figure 1). This is done
on the copy of the history so that the original order
of the history is preserved. Since copying the entire
history consumes both memory space and processing
power, we propose a partial history copy technique that
copies only the necessary portion of the history. The
proposed technique aims to find an operation opm in
the history where all other operations located to the
right of opm (∀i : opm ≺ opi) are concurrent to op. If
opm is identified, then only operations to the left of it
(∀i : opi ≺ opm) need to be copied and rearranged since
they consist of operations that precede op and opera-
tions concurrent with op. The following Lemmas are
introduced to help find the appropriate opm.

Lemma 3.3. If opi → opj, then opi ≺ opj.

Proof. According to Definition 2.1, there are two pos-
sible cases where opi → opj :

1. opi and opj are generated by the same site and
opi is generated before opj . In this case C(opi) <

C(opj) if Lamport’s clock is used for total order-
ing, and sum(Vopi

) < sum(Vopj
) if state vector is

used for total ordering. Thus opi ≺ opj no mat-
ter what technique is used for total ordering.

2. opi and opj are generated by different sites and opj

is generated by site Sopj
after opi is received by

Sopj
. If Lamport’s clock is used, Sopj

will update
its logical clock Cj upon receiving opi such that
Cj > C(opi), thus C(opj) > C(opi), which means
opi ≺ opj . If state vector is used, site Sj will only
execute opi if VSj

[k] ≥ Vopi
[k](∀k : 1 ≤ k ≤ N).

Thus, after executing opi, sum(VSj
) > sum(Vopi

).
opj will bear state vector Vopj

, equal to VSj
, which

makes sum(Vopj
) > sum(Vopi

) and therefore opi ≺
opj . Therefore opi ≺ opj no matter what technique
is used for total ordering.

Therefore in either case (opi and opj are generated at
the same site or not), if opi → opj , then opi ≺ opj .

Lemma 3.4. If opj ≺ opi, then opi 6→ opj.

Proof. The inverse of Lemma 3.3 is true that if opi 6≺
opj , then opi 6→ opj . Since opi 6≺ opj is equivalent to
opj ≺ opi, the inverse can be restated as: if opj ≺ opi,
then opi 6→ opj .

When a remote operation op arrives at site Si, there
is opm in the history such that opm ≺ op ≺ opm+1.
Since op ≺ opm+1, opm+1 and all other operations af-
ter it do not precede op (Lemma 3.4), they stay at their
respective position in the history and only [op1 . . . opm]
needs to be rearranged and therefore copied (Fig-
ure 2). In other words, only operations that totally
precede op ((∀i : opi ≺ op) need to be copied. The to-
tal ordering mechanism defined in Section 3.1 is used
to determine the total precedence (opi ≺ op). The Par-
tial Copy algorithm is outlined as follows:

Partial Copy History(HS , op) {

H ′

S = []; /∗ Initialize an empty history copy ∗/

j = 1;

while(opj ≺ op AND j ≤ N) {

H ′

S = H ′

S + [opj];

j = j + 1;

}

return H ′

S ;

}

Although this technique is expected to minimise
memory and processing usage over time, it consumes
additional processing power when tracing the history
to find the opm. Therefore this technique is compared
with the full history copy approach in the empirical

Figure 2. Separating the History Using Partial

Copy.

study presented in the following section to determine
whether the use of this algorithm is justified.

The design factors and alternative implementations
discussed in this section can be summarised as follows:

1. State Vector(SV) vs. Lamport’s Clock(LC),
2. History Trimming(HT) vs. No History Trimming

(NoHT), and
3. Full History Copy (FC) vs. Partial Copy (PC).

Based on those aspects, we can devise eight algorithm
designs derived from combinations of the above tech-
niques, which are compared empirically in the follow-
ing section:

1. SV, NoHT, and FC
2. LC, NoHT, and FC
3. SV, HT, and FC
4. LC, HT, and FC
5. SV, NoHT, and PC
6. LC, NoHT, and PC
7. SV, HT, and PC
8. LC, HT, and PC

4. Experiments and Results

As discussed previously the aim of this paper is to
propose and evaluate an efficient real-time consistency
management algorithm for use in mobile collaboration
environments. Based on the review of existing work
and following on from the identification of, and solu-
tion to, a number of problems, this section presents
an empirical study which compares a number of candi-
date algorithm variations in order to determine which
one is most efficient in terms of performance and re-
source utilisation and thus most suitable for use in a
mobile context. The experiments were based on simu-
lations written in the Java programming language.

4.1. Independent Variables

Three independent variables are manipulated for
each of the eight algorithm combinations identified in
the previous section: number of sites, number of oper-
ations and broadcast delay. The higher the number of
sites, the greater the number of remote operations and
thus concurrent operations. The higher the number of
generated operations at each site, the larger the his-
tory size. The impact of history trimming is expected
to be more significant as the number of operations, and
thus the history size, increases. The number of concur-
rent operations increases as this delay increases. The
chosen broadcast delays are intended to be representa-
tive of realistic delays in a mobile environment, with
the main intention is to investigate the trend in algo-
rithm performance as delay increases.

4.2. Dependent Variables and Expected

Outcomes

The efficiency characteristic of performance is op-
erationally defined as the dependant variable Execu-
tionTime measured in seconds. The algorithm with the
highest performance is the one with the lowest process-
ing time, which relates to reduced power consumption
and an enhanced user experience. The following are ex-
pected outcomes in terms of performance:

• P-1: LC will be faster than SV, since SV requires
additional processing effort for the summation of
the state vector elements.

• P-2: HT will be faster than NoHT. HT reduces
history size, thus the remote operation process is
expected to be faster.

• P-3: PC will be faster than FC. PC copies only
part of the history and thus the time taken to per-
form history separation will be shorter.

The second efficiency characteristic of resource utilisa-
tion is operationally defined using two variables, His-
tory Size after operation execution and History Copy
Size during operation execution, both of which relate to
memory usage. The following are expected outcomes
with regards to the resource utilisation:

• M-1: History size after operation execution is less
for HT since HT regularly trims the history.

• M-2: PC uses less memory during a operation ex-
ecution, since it does not copy the entire history.

Furthermore, the expected outcomes for the perfor-
mance subcharacteristic (P-1, P-2, and P-3) also in-
directly influence resource utilisation since the reduced
processing overhead of an operation results in lower
processor utilisation.

4.3. Results

Figure 3 shows the results in terms of performance,
demonstrating that P-2 is satisfied. The design al-
ternatives involving history trimming (HT) perform
better in terms of execution time than those with-
out (NoHT). On average, HT reduces the execution
time by almost 40% (Figure 3d) with the difference in-
creasing as the number of sites and number of gener-
ated operations (and thus the total number of opera-
tions being exchanged) increases. The longer the col-
laboration runs, the greater the difference in history
size between HT and NoHT (Figure 4a), thus the exe-
cution time difference between HT and NoHT also in-
creases (Figure 3a and 3b). However, as the broadcast
delay increases, the performance of HT gets closer to
NoHT (Figure 3c). When the delay is 300ms, the dif-
ference is approximately 50% and when the delay is
8000ms, the difference is less than 20%. This is be-
cause the longer the broadcast delay, the less often the
history gets trimmed. An operation in the history of
a site can only be trimmed if that site knows that all
other sites have already executed that operation, as de-
rived from the state vector of the received operations
(see Section 3.2). Consequently, when the network de-
lay is high, this information arrives later, thus the his-
tory also gets trimmed later than when the network
delay is low.

While P-2 is strongly displayed by the graphs, ex-
pected outcome P-1 does not hold since there are situa-
tions where SV is better than Lamport and vice versa.
Therefore, based on execution time, there is no clear
reason to favour SV or Lamport for total ordering.
The same is true with P-3 where PC does not im-
prove the performance in terms of execution time. Al-
though PC saves processing power by not copying the
entire history, it involves additional condition check-
ing while copying the history and thus does not im-
prove processor usage overall. Therefore, to help de-
termine which total ordering technique is better over-
all, the resource utilisation of each technique in terms
of memory usage must be considered.

Figure 4a supports our prediction that without trim-
ming, history size grows linearly towards infinity since
each executed operation is stored in the history for the
entire duration of the collaboration session. Depending
upon the implementation, this may also impact stor-
age requirements and increase processing overhead as
parts of the history are paged to and from permanent
storage. In contrast, the designs that implement His-
tory Trimming prevent this from happening, thus sup-
porting M-1 when either SV or Lamport is used for to-
tal ordering. Of particular interest is that history trim-

Figure 3. Simulation Results.

ming is more effective when SV is used in preference
to Lamport. Therefore given that SV and Lamport ex-
hibit similar performance characteristics in terms of ex-
ecution time, SV is more efficient, and thus a better
solution overall, since it results in less memory utilisa-
tion.

Figure 4b clearly supports the expectation M-2 that
PC reduces the size of the history copy and thus re-
quires less memory to process remote operations re-
gardless of whether or not HT is used. Therefore, since
PC is neutral in terms of performance, as measured
by execution time, due to its reduced memory utilisa-
tion it is superior in terms of efficiency to FC.

In summary, HT saves processing power and con-
sumes less memory and is thus a clear choice in com-
parison to NoHT. For total ordering, SV is better than
Lamport since even though they are similar in terms
of performance, SV has lower memory utilisation re-
quirements. PC is similar in that although not clearly
superior in terms of performance it again reduces mem-
ory usage compared with FC. Therefore in summary,
the algorithm variation that implements History Trim-
ming and Partial History Copy, and uses State Vector
for total ordering, is the most efficient and thus best
choice for implementing a real-time collaboration algo-
rithm in a mobile environment.

5. Conclusion

This paper has addressed the importance of effi-
ciency as a software quality attribute, when design-
ing a consistency management algorithm for use in a
real-time mobile collaboration application. We propose
and evaluate a new algorithm that is more efficient in
terms of performance and resource utilisation and thus
more suitable for use in a mobile context. The concepts
of SOCT3 are used as a basis for the algorithm’s cor-
rectness. The dependence of the algorithm on a cen-
tral server is removed by incorporating known total
ordering techniques, and the history trimming tech-
nique is added. Furthermore, the new algorithm intro-
duced a novel partial history copying technique. The
empirical testing indicates that a combination of His-
tory Trimming, Partial History Copy and State Vector
for total ordering, produces the most efficient design
for use in a mobile environment. Not only does this al-
gorithm reduce overall execution time, it also reduces
resource utilisation in terms of memory or fixed stor-
age usage thus serving as a benchmark for comparison
in any further research on this topic. While this pa-
per has focused on efficiency, future work could involve
the testing of additional ISO 9126-1 quality character-
istics such as reliability and security. Such work would
involve further use of simulation and possibly live test-

Figure 4. History Size.

ing using a real application, in addition to revised ex-
perimental designs based on the derivation and oper-
ational definition of a new set of variables to quantify
the effects on the different quality attributes.

6. Acknowledgements

This work is part of the research pro-
gram of the Australian Telecommunica-
tions Cooperative Research Centre (ATCRC)
http://www.telecommunications.crc.org.au.

References

[1] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In Proceedings of the 1989 ACM

SIGMOD international conference on Management of

data, pages 399–407. ACM Press, 1989.

[2] R. Guerraoui and C. Hari. On the consistency prob-
lem in mobile distributed computing. In Proceedings of

the secondACM international workshop onPrinciples of

mobile computing, pages 51–57. ACM Press, 2002.

[3] ISO/IEC. FDIS 9126-1 Software Engineering - Product

Quality - Part 1: Quality Model. November 1999.

[4] A. Karsenty and M. Beaudouin-Lafon. An algorithm for
distributed grouware applications. In Proceedings the

13th International Conference on Distributed Comput-

ing Systems, pages 195–202, May 1993.

[5] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Comunications of the ACM,
21(7):558–565, July 1978.

[6] F.Mattern. Virtual time and global states of distributed
systems. In Proceedings of the International Workshop

on Parallel and Distributed Algorithms, pages 215–276.
Elsevier Pub., 1989.

[7] J. Munson and P. Dewan. A concurrency control frame-
work for collaborative systems. In Proceedings of the

1996 ACM conference on Computer supported coopera-

tive work, pages 278–287. ACM Press, 1996.
[8] A. Prakash and M. J. Knister. Undoing actions in col-

laborative work. In Proceedings of the 1992 ACM con-

ference on Computer-supported cooperative work, pages
273–280. ACM Press, 1992.

[9] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser.
An integrating, transformation-oriented approach to
concurrency control and undo in group editors. In Pro-

ceedings of the 1996 ACM conference on Computer sup-

ported cooperative work, pages 288–297. ACM Press,
1996.

[10] M. Roseman and S. Greenberg. Building real-time
groupware with GroupKit, a groupware toolkit. ACM

Trans. Comput.-Hum. Interact., 3(1):66–106, 1996.

[11] M. Suleiman, M. Cart, and J. Ferrié;. Serialization of
concurrent operations in a distributed collaborative en-
vironment. In Proceedings of the international ACM

SIGGROUP conference on Supporting group work : the

integration challenge, pages 435–445. ACM Press, 1997.

[12] C. Sun. Optional and responsive fine-grain locking in
internet-based collaborative systems. IEEE Transac-

tions on Parallel and Distributed Systems, 13(9):994–
1008, September 2002.

[13] C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and achieve-
ments. In Proceedings of the 1998 ACM conference

on Computer supported cooperative work, pages 59–68.
ACM Press, 1998.

[14] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achiev-
ing convergence, causality preservation, and inten-
tion preservation in real-time cooperative editing sys-
tems. ACM Trans. Comput.-Hum. Interact., 5(1):63–
108, 1998.

[15] C. Sun, Y. Zhang, X. Jia, and Y. Yang. A generic op-
eration transformation scheme for consistency mainte-
nance in real-time cooperative editing systems. In Pro-

ceedings of the international ACM SIGGROUP confer-

ence on Supporting group work : the integration chal-

lenge, pages 425–434. ACM Press, 1997.

[16] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
convergence in a distributed real-time collaborative en-
vironment. In Proceedings of the 2000 ACM conference

on Computer supported cooperative work, pages 171–
180. ACM Press, 2000.

