2,246 research outputs found

    Nonlinear dynamics in superlattices driven by high frequency ac-fields

    Full text link
    We investigate the dynamical processes taking place in nanodevices driven by high-frequency electromagnetic fields. We want to elucidate the role of different mechanisms that could lead to loss of quantum coherence. Our results show how the dephasing effects of disorder that destroy after some periods coherent oscillations, such as Rabi oscillations, can be overestimated if we do not consider the electron-electron interactions that can reduce dramatically the decoherence effects of the structural imperfections. Experimental conditions for the observation of the predicted effects are discussed.Comment: REVTEX (8 pages) and 4 figures (Postscript

    Heat pipes for wing leading edges of hypersonic vehicles

    Get PDF
    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Optical absorption in semiconductor quantum dots: Nonlocal effects

    Full text link
    The optical absorption of a single spherical semiconductor quantum dot in an electrical field is studied taking into account the nonlocal coupling between the field of the light and the polarizability of the semiconductor. These nonlocal effects lead to a small size anf field dependent shift and broadening of the excitonic resonance which may be of interest in future high precision experiments.Comment: 6 pages, 4 figure

    Plasmon dispersion in metal nanoparticle chains from angle-resolved scattering

    Get PDF
    We present angle and frequency resolved optical extinction measurements to determine the dispersion relation of plasmon modes on Ag and Au nanoparticle chains with pitches down to 75 nm. The large splitting between transverse and longitudinal modes and the band curvature are inconsistent with reported electrostatic near-field models, and confirm that far-field retarded interactions are important, even for λ/5\lambda/5-sized structures. The data imply that lower propagation losses, larger signal bandwidth and larger maximum group velocity then expected can be achieved for wave vectors below the light line. We conclude that for the design of optical nanocircuits coherent far-field couplings across the entire circuit need to be considered, even at subwavelength feature sizes.Comment: 4 pages, 4 figures, colo

    Developing a scalable training model in global mental health: pilot study of a video-assisted training Program for Generalist Clinicians in Rural Nepal.

    Get PDF
    BackgroundIn low- and middle-income countries, mental health training often includes sending few generalist clinicians to specialist-led programs for several weeks. Our objective is to develop and test a video-assisted training model addressing the shortcomings of traditional programs that affect scalability: failing to train all clinicians, disrupting clinical services, and depending on specialists.MethodsWe implemented the program -video lectures and on-site skills training- for all clinicians at a rural Nepali hospital. We used Wilcoxon signed-rank tests to evaluate pre- and post-test change in knowledge (diagnostic criteria, differential diagnosis, and appropriate treatment). We used a series of 'Yes' or 'No' questions to assess attitudes about mental illness, and utilized exact McNemar's test to analyze the proportions of participants who held a specific belief before and after the training. We assessed acceptability and feasibility through key informant interviews and structured feedback.ResultsFor each topic except depression, there was a statistically significant increase (Δ) in median scores on knowledge questionnaires: Acute Stress Reaction (Δ = 20, p = 0.03), Depression (Δ = 11, p = 0.12), Grief (Δ = 40, p < 0.01), Psychosis (Δ = 22, p = 0.01), and post-traumatic stress disorder (Δ = 20, p = 0.01). The training received high ratings; key informants shared examples and views about the training's positive impact and complementary nature of the program's components.ConclusionVideo lectures and on-site skills training can address the limitations of a conventional training model while being acceptable, feasible, and impactful toward improving knowledge and attitudes of the participants

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    Nonlinear stabilization of tokamak microturbulence by fast ions

    Get PDF
    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.Comment: 5 pages, 5 figure
    corecore