9 research outputs found

    Prenatal Zidovudine Treatment Modifies Early Development of Rat Osteoid – Confocal Microspectroscopy Analysis

    Get PDF
    Autofluorescence of the bone extracellular matrix (ECM) has not been widely explored although the ECMplays a very important role in bone development. In our research we focused on examining the bone matrix of very young animals due to the intense growth process during the first month of life. Structure images and fluorescence spectra of the bone surface were carried out using confocal fluorescence microscope Eclipse Ti-S inverted CLSM (NIKON, Japan) for compact tibia of healthy 7-, 14- and 28-dayold rat newborns after prenatal zidovudine administration in comparison with control. Spectral features of ECM autofluorescence were analyzed statistically by taking into consideration p < 0.05. The CLSM technique allows for simultaneous examination of the structure and autofluorescence from selected areas of the bone surface. Excessive autofluorescence of ECM after prenatal zidovudine administration influences bone growth incommensurably to the newborns’ age. Therefore the possibility of an additional non-enzymatic mechanism of collagen cross-linking in the first two weeks of life of newborn rats prenatally treated with zidovudine has been considered. Our results suggest that ECMautofluorescence can be an indicator of bone development in the normal and pathological state

    Machine learning models for predicting patients survival after liver transplantation

    Get PDF
    In our work we have built models predicting whether a patient will lose an organ after liver transplantation within a specified time horizon. We have used the observations of bilirubin and creatinine in the whole first year after the transplantation to derive predictors capturing not only their static value but also variability. Our models indeed have predictive power which proves the value of incorporating variability of biochemical measurements and it is the first contribution of our paper.The second one is the selection of the best model for the defined problem. We have identified that full-complexity models, such as random forests and gradient boosting, despite having the best predictive power, lack sufficient interpretability which is important in medicine. We have found that generalized additive models (GAM) provide desired interpretability and their predictive power is closer to the predictions of full-complexity models than to the predictions of simple linear models

    Adipose-Derived Stem Cells undergo differentiation after co-culture with porcine Limbal Epithelial Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are objects of interest in regenerative medicine. They are used for various therapies such as for the regeneration of bone, chondrocytes and other tissues. Adipose derived stem cells (ADSCs) inter alia are particularly easy to access, they are relatively abundant in fat tissue. ADSCs could be differentiated into many types of cells. To date, it has been proven that ADSCs only differentiate into mesodermal cell lineages. In this study, we present the differentiation of ADSCs into the corneal epithelium. Human ADSCs were placed in a co-culture with porcine limbal epithelial stem cells (LESCs). After 14 days of cultivation, total RNA was extracted for the analysis of the molecular markers (expression of genes of interest). The gene expression was assessed by real-time RT-qPCR. The expression of the surface molecular markers of ADSCs is modulated after co-culturing. We have observed the decrease in CD73, CD90 and CD105 mRNA expression, while the expression of mRNA coding for CK3 and CK12 mRNA was increased in ADSCs co-cultured with porcine limbal epithelial stem cells as compared to the control. We conclude that the coculture of LESCs and ADSCs changed ADSCs’ molecular markers gene expression indicating initiation of differentiation towards limbal cells

    Serum Sulfhydryl Groups, Malondialdehyde, Uric Acid, and Bilirubin as Predictors of Adverse Outcome in Heart Failure Patients due to Ischemic or Nonischemic Cardiomyopathy

    No full text
    Oxidative stress plays a significant role in the pathogenesis of heart failure (HF). The aim of the study was to investigate the prognostic value of oxidation-reduction (redox) markers in patients with HF due to ischemic and nonischemic cardiomyopathy. The study included 707 patients of HF allocated into two groups depending on ethology: ischemic cardiomyopathy (ICM) (n=435) and nonischemic cardiomyopathy (nICM) (n=272), who were followed up for one year. The endpoint occurrence (mortality or heart transplantation) in a 1-year follow-up was similar in the ICM and nICM group. The predictive value of endpoint occurrence of oxidative stress biomarkers such as the serum protein sulfhydryl groups (PSH), malondialdehyde (MDA), uric acid (UA), bilirubin, and MDA/PSH ratio and other clinical and laboratory data were assessed in both groups (ICM and nICM) separately using univariate and multivariate Cox regression analyses. In multivariate analysis, the higher concentrations of UA (p=0.015, HR=1.024, 95% CI (1.005-1.044)) and MDA (p=0.004, HR=2.202, 95% CI (1.296-3.741)) were significantly associated with adverse prognosis in patients with ICM. Contrastingly, in patients with nICM, we observed that higher bilirubin concentration (p=0.026, HR=1.034, 95% CI (1.004-1.064)) and MDA/PSH ratio (p=0.034, HR=3.360, 95% CI (1.096-10.302)) were significantly associated with increased risk of death or HT. The results showed the association of different oxidative biomarkers on the unfavorable course of heart failure depending on etiology

    The rare Holsteinian (Mazovian) interglacial limnic deposits in the Książnica outcrop at Krzczonów (near Świdnica), Sudetic Foreland

    No full text
    corecore