369 research outputs found

    A rule of seven in Watson-Crick base-pairing of mismatched sequences

    Get PDF
    Sequence recognition through base-pairing is essential for DNA repair and gene regulation, but the basic rules governing this process remain elusive. In particular, the kinetics of annealing between two imperfectly matched strands is not well characterized, despite its potential importance in nucleic acid–based biotechnologies and gene silencing. Here we use single-molecule fluorescence to visualize the multiple annealing and melting reactions of two untethered strands inside a porous vesicle, allowing us to precisely quantify the annealing and melting rates. The data as a function of mismatch position suggest that seven contiguous base pairs are needed for rapid annealing of DNA and RNA. This phenomenological rule of seven may underlie the requirement for seven nucleotides of complementarity to seed gene silencing by small noncoding RNA and may help guide performance improvement in DNA- and RNA-based bio- and nanotechnologies, in which off-target effects can be detrimental

    HypBO: Expert-Guided Chemist-in-the-Loop Bayesian Search for New Materials

    Full text link
    Robotics and automation offer massive accelerations for solving intractable, multivariate scientific problems such as materials discovery, but the available search spaces can be dauntingly large. Bayesian optimization (BO) has emerged as a popular sample-efficient optimization engine, thriving in tasks where no analytic form of the target function/property is known. Here we exploit expert human knowledge in the form of hypotheses to direct Bayesian searches more quickly to promising regions of chemical space. Previous methods have used underlying distributions derived from existing experimental measurements, which is unfeasible for new, unexplored scientific tasks. Also, such distributions cannot capture intricate hypotheses. Our proposed method, which we call HypBO, uses expert human hypotheses to generate an improved seed of samples. Unpromising seeds are automatically discounted, while promising seeds are used to augment the surrogate model data, thus achieving better-informed sampling. This process continues in a global versus local search fashion, organized in a bilevel optimization framework. We validate the performance of our method on a range of synthetic functions and demonstrate its practical utility on a real chemical design task where the use of expert hypotheses accelerates the search performance significantly

    Bilan de l’azote et du phosphore dans les exploitations agricoles de la région de Thiès au Sénégal

    Get PDF
    Dans la zone des Niayes de Thiès au Sénégal, un système d’exploitation agricole intégrant l’agriculture et l’élevage est largement adopté. L’aviculture est généralement associée au maraîchage avec une utilisation simultanée des engrais chimiques et des déchets organiques issus des élevages. Le bilan des minéraux essentiels (azote et phosphore) à l’échelle de l’exploitation agricole et de ses indicateurs de fonctionnement ont été estimés à l’aide d’enquêtes et d’analyses de laboratoire. Les bilans positifs obtenus au niveau de toutes les exploitations prospectées ont montré des excédents d'azote (N) et de phosphore (P) élevés avec des valeurs moyennes de 1455,38 et 76,59 kg/ha/an, respectivement. Les pertes de N et de P sont importantes et restent indépendants de l’effectif des sujets. Les indicateurs de fonctionnement calculés pour l’azote et le phosphore traduisent leur mauvaise gestion dans les exploitations avec des indices de gaspillage respectifs de 12,74 et de 1,90 kg.Mot clés : Minéraux, indicateurs de fonctionnement, exploitations agricoles, Sénégal

    Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing

    Get PDF
    Live cell imaging of mammalian RNA polymerase II (Pol II) has previously relied on random insertions of exogenous, mutant Pol II coupled with the degradation of endogenous Pol II using a toxin, α-amanitin. Therefore, it has been unclear whether over-expression of labeled Pol II under an exogenous promoter may have played a role in reported Pol II dynamics in vivo. Here we label the endogenous Pol II in mouse embryonic fibroblast (MEF) cells using the CRISPR/Cas9 gene editing system. Using single-molecule based super-resolution imaging in the living cells, we captured endogenous Pol II clusters. Consistent with previous studies, we observed that Pol II clusters were short-lived (cluster lifetime ~8 s) in living cells. Moreover, dynamic responses to serum-stimulation, and drug-mediated transcription inhibition were all in agreement with previous observations in the exogenous Pol II MEF cell line. Our findings suggest that previous exogenously tagged Pol II faithfully recapitulated the endogenous polymerase clustering dynamics in living cells, and our approach may in principle be used to directly label transcription factors for live cell imaging.National Cancer Institute (U.S.) (Award DP2CA195769)Massachusetts Institute of Technology. Department of Physic

    A first order phase transition mechanism underlies protein aggregation in mammalian cells

    Get PDF
    The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates

    Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea

    Get PDF
    CowpeaThe stay-green phenomenon is a key plant trait with wide usage in managing crop production under limited water conditions. This trait enhances delayed senescence, biomass, and grain yield under drought stress. In this study we sought to identify QTLs in cowpea (Vigna unguiculata) consistent across experiments conducted in Burkina Faso, Nigeria, Senegal, and the United States of America under limited water conditions. A panel of 383 diverse cowpea accessions and a recombinant inbred line population (RIL) were SNP genotyped using an Illumina 1536 GoldenGate assay. Phenotypic data from thirteen experiments conducted across the four countries were used to identify SNP-trait associations based on linkage disequilibrium association mapping, with bi-parental QTL mapping as a complementary strategy. We identified seven loci, five of which exhibited evidence suggesting pleiotropic effects (stay-green) between delayed senescence, biomass, and grain yield. Further, we provide evidence suggesting the existence of positive pleiotropy in cowpea based on positively correlated mean phenotypic values (0.34, r ,0.87) and allele effects (0.07, r ,0.86) for delayed senescence and grain yield across three African environments. Three of the five putative stay-green QTLs, Dro-1, 3, and 7 were identified in both RILs and diverse germplasm with resolutions of 3.2 cM or less for each of the three loci, suggesting that these may be valuable targets for marker-assisted breeding in cowpea. Also, the co-location of early vegetative delayed senescence with biomass and grain yield QTLs suggests the possibility of using delayed senescence at the seedling stage as a rapid screening tool for post-flowering drought tolerance in cowpea breeding. BLAST analysis using EST sequences harboring SNPs with the highest associations provided a genomic context for loci identified in this study in closely related common bean (Phaseolus vulgaris) and soybean (Glycine max) reference genomes

    Hsp70–Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation

    Get PDF
    Protein abnormalities in cells are the cause of major pathologies, and a number of adaptive responses have evolved to relieve the toxicity of misfolded polypeptides. To trigger these responses, cells must detect the buildup of aberrant proteins which often associate with proteasome failure, but the sensing mechanism is poorly understood. Here we demonstrate that this mechanism involves the heat shock protein 70–Bcl-2–associated athanogene 3 (Hsp70–Bag3) complex, which upon proteasome suppression responds to the accumulation of defective ribosomal products, preferentially recognizing the stalled polypeptides. Components of the ribosome quality control system LTN1 and VCP and the ribosome-associated chaperone NAC are necessary for the interaction of these species with the Hsp70–Bag3 complex. This complex regulates important signaling pathways, including the Hippo pathway effectors LATS1/2 and the p38 and JNK stress kinases. Furthermore, under proteotoxic stress Hsp70–Bag3–LATS1/2 signaling regulates protein aggregation. We established that the regulated step was the emergence and growth of abnormal protein oligo-mers containing only a few molecules, indicating that aggregation is regulated at very early stages. The Hsp70–Bag3 complex therefore functions as an important signaling node that senses proteo-toxicity and triggers multiple pathways that control cell physiology, including activation of protein aggregation
    • …
    corecore