172 research outputs found

    Comportamiento de hormigón confinado con FRP en pilares cuadrados

    Get PDF
    A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and ductility of square section reinforced concrete columns with rounded corners. The strength enhancement ratio is greater the lower the concrete strength and also increases with the stiffness of the jacket. The confined concrete behaviour was predicted according to the more accepted theoretical models and compared with experimental results. There are two key parameters which critically influence the fitting of the models: the strain efficiency factor and the effect of confinement in non-circular sections.La mayoría de las investigaciones sobre hormigón confinado con FRP se han realizado sobre pilares de sección circular, pero el comportamiento en secciones cuadradas/rectangulares, donde el confinamiento es menos eficaz, es mucho menos conocido. Este trabajo presenta los resultados de un estudio experimental sobre probetas de hormigón de baja resistencia y sección cuadrada. Se han ensayado a compresión centrada diez probetas de tamaño intermedio. Los resultados indican que el confinamiento mejora significativamente la resistencia y ductilidad del hormigón en columnas de sección cuadrada con las esquinas redondeadas. El incremento de resistencia es mayor cuanto menor es la resistencia del hormigón sin confinar y también aumenta con la rigidez del encamisado. Los resultados se compararon con los obtenidos según los modelos teóricos más aceptados. Hay dos parámetros críticos en el ajuste de los modelos: el factor de eficiencia de la deformación y el efecto de confinamiento en secciones no circulares

    Engineering the microstructure and magnetism of La2_2CoMnO6_6 thin films by tailoring oxygen stoichiometry

    Get PDF
    We report on the magnetic and structural properties of ferromagnetic-insulating La2_2CoMnO6_6 thin films grown on top of (001) STO substrates by means of RF sputtering technique. Careful structural analysis, by using synchrotron X-ray diffraction, allows identifying two different crystallographic orientations that are closely related to oxygen stoichiometry and to the features (coercive fields and remanence) of the hysteresis loops. Both Curie temperature and magnetic hysteresis turn out to be dependent on the oxygen stoichiometry. In situ annealing conditions allow tailoring the oxygen content of the films, therefore controlling their microstructure and magnetic properties

    Rapid determination of colistin resistance in clinical strains of acinetobacter baumannii by use of the micromax assay

    Full text link
    Colistin is an old antibiotic which has been used as a therapeutic option for carbapenem- and multidrug-resistant Gram-negative bacteria, like Acinetobacter baumannii. This pathogen produces life-threatening infections, mainly in patients admitted to intensive care units. Rapid detection of resistance to colistin may improve patient outcomes and prevent the spread of resistance. For this purpose, Micromax technology was evaluated in four isogenic A. baumannii strains with known mechanisms of resistance to colistin and in 66 isolates (50 susceptible and 16 resistant). Two parameters were determined, DNA fragmentation and cell wall damage. To assess DNA fragmentation, cells trapped in a microgel were incubated with a lysing solution to remove the cell wall, and the released nucleoids were visualized under fluorescence microscopy. Fragmented DNA was observed as spots that diffuse from the nucleoid. To assess cell wall integrity, cells were incubated with a lysis solution which removes only weakened cell walls, resulting in nucleoid release exclusively in affected cells. A dose-response relationship was demonstrated between colistin concentrations and the percentages of bacteria with DNA fragmentation and cell wall damage, antibiotic effects that were delayed and less frequent in resistant strains. Receiver operating characteristic (ROC) curves demonstrated that both DNA fragmentation and cell wall damage were excellent parameters for identifying resistant strains. Obtaining<11% of bacteria with cell wall damage after incubation with 0.5 g/ml colistin identified resistant strains of A. baumannii with 100% sensitivity and 96% specificity. Results were obtained in 3 h 30 min. This is a simple, rapid, and accurate assay for detecting colistin resistance in A. baumannii, with strong potential value in critical clinical situationsThis work has been supported by MagicBullet, Xunta de Galicia 10CSA916020PR, and by REIPI, the Spanish Network for Research in Infectious Diseases (Instituto de Salud Carlos III, REIPI RD12/0015) and the Fondo de Investigaciones Sanitarias (FIS PI12/00552) to G.B. M.J.M. is supported by the Subprograma Miguel Servet from the Ministerio de Economía y Competitividad of Spain (CP11/00314). MagicBullet is a project funded by the European Union–Directorate General for Research and Innovation through the Seventh Framework Program for Research and Development (grant agreement 278232) and has been running since 1 January 2012 (36 months’ duration

    A 1024-Channel 10-Bit 36-μW/ch CMOS ROIC for Multiplexed GFET-Only Sensor Arrays in Brain Mapping

    Get PDF
    This paper presents a 1024-channel neural read-out integrated circuit (ROIC) for solution-gated GFET sensing probes in massive muECoG brain mapping. The proposed time-domain multiplexing of GFET-only arrays enables low-cost and scalable hybrid headstages. Low-power CMOS circuits are presented for the GFET analog frontend, including a CDS mechanism to improve preamplifier noise figures and 10-bit 10-kS/s A/D conversion. The 1024-channel ROIC has been fabricated in a standard 1.8-V 0.18-mum CMOS technology with 0.012 mm 2 and 36 mu W per channel. An automated methodology for the in-situ calibration of each GFET sensor is also proposed. Experimental ROIC tests are reported using a custom FPGA-based muECoG headstage with 16times 32 and 32times 32 GFET probes in saline solution and agar substrate. Compared to state-of-art neural ROICs, this work achieves the largest scalability in hybrid platforms and it allows the recording of infra-slow neural signals
    corecore