19 research outputs found
Current Topics in Technology-Enabled Stroke Rehabilitation and Reintegration: A Scoping Review and Content Analysis
Background. There is a worldwide health crisis stemming from the rising incidence of various debilitating chronic diseases, with stroke as a leading contributor. Chronic stroke management encompasses rehabilitation and reintegration, and can require decades of personalized medicine and care. Information technology (IT) tools have the potential to support individuals managing chronic stroke symptoms. Objectives. This scoping review identifies prevalent topics and concepts in research literature on IT technology for stroke rehabilitation and reintegration, utilizing content analysis, based on topic modelling techniques from natural language processing to identify gaps in this literature. Eligibility Criteria. Our methodological search initially identified over 14,000 publications of the last two decades in the Web of Science and Scopus databases, which we filter, using keywords and a qualitative review, to a core corpus of 1062 documents. Results. We generate a 3- topic, 4-topic and 5-topic model and interpret the resulting topics as four distinct thematics in the literature, which we label as Robotics, Software, Functional and Cognitive. We analyze the prevalence and distinctiveness of each thematic and identify some areas relatively neglected by the field. These are mainly in the Cognitive thematic, especially for systems and devices for sensory loss rehabilitation, tasks of daily living performance and social participation. Conclusion. The results indicate that IT-enabled stroke literature has focused on Functional outcomes and Robotic technologies, with lesser emphasis on Cognitive outcomes and combined interventions. We hope this review broadens awareness, usage and mainstream acceptance of novel technologies in rehabilitation and reintegration among clinicians, carers and patients
Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element
Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, similar to 3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand
Understanding and Predicting Cognitive Improvement of Young Adults in Ischemic Stroke Rehabilitation Therapy
Accurate early predictions of a patient\u27s likely cognitive improvement as a result of a stroke rehabilitation programme can assist clinicians in assembling more effective therapeutic programs. In addition, sufficient levels of explainability, which can justify these predictions, are a crucial requirement, as reported by clinicians. This article presents a machine learning (ML) prediction model targeting cognitive improvement after therapy for stroke surviving patients. The prediction model relies on electronic health records from 201 ischemic stroke surviving patients containing demographic information, cognitive assessments at admission from 24 different standardized neuropsychology tests (e.g., TMT, WAIS-III, Stroop, RAVLT, etc.), and therapy information collected during rehabilitation (72,002 entries collected between March 2007 and September 2019). The study population covered young-adult patients with a mean age of 49.51 years and only 4.47% above 65 years of age at the stroke event (no age filter applied)
Know an Emotion by the Company It Keeps: Word Embeddings from Reddit/Coronavirus
Social media is a crucial communication tool (e.g., with 430 million monthly active users in online forums such as Reddit), being an objective of Natural Language Processing (NLP) techniques. One of them (word embeddings) is based on the quotation, “You shall know a word by the company it keeps,” highlighting the importance of context in NLP. Meanwhile, “Context is everything in Emotion Research.” Therefore, we aimed to train a model (W2V) for generating word associations (also known as embeddings) using a popular Coronavirus Reddit forum, validate them using public evidence and apply them to the discovery of context for specific emotions previously reported as related to psychological resilience. We used Pushshiftr, quanteda, broom, wordVectors, and superheat R packages. We collected all 374,421 posts submitted by 104,351 users to Reddit/Coronavirus forum between January 2020 and July 2021. W2V identified 64 terms representing the context for seven positive emotions (gratitude, compassion, love, relief, hope, calm, and admiration) and 52 terms for seven negative emotions (anger, loneliness, boredom, fear, anxiety, confusion, sadness) all from valid experienced situations. We clustered them visually, highlighting contextual similarity. Although trained on a “small” dataset, W2V can be used for context discovery to expand on concepts such as psychological resilience
Understanding and Predicting Cognitive Improvement of Young Adults in Ischemic Stroke Rehabilitation Therapy
Accurate early predictions of a patient's likely cognitive improvement as a result of a stroke rehabilitation programme can assist clinicians in assembling more effective therapeutic programs. In addition, sufficient levels of explainability, which can justify these predictions, are a crucial requirement, as reported by clinicians. This article presents a machine learning (ML) prediction model targeting cognitive improvement after therapy for stroke surviving patients. The prediction model relies on electronic health records from 201 ischemic stroke surviving patients containing demographic information, cognitive assessments at admission from 24 different standardized neuropsychology tests (e.g., TMT, WAIS-III, Stroop, RAVLT, etc.), and therapy information collected during rehabilitation (72,002 entries collected between March 2007 and September 2019). The study population covered young-adult patients with a mean age of 49.51 years and only 4.47% above 65 years of age at the stroke event (no age filter applied). Twenty different classification algorithms (from Python's Scikit-learn library) are trained and evaluated, varying their hyper-parameters and the number of features received as input. Best-performing models reported Recall scores around 0.7 and F1 scores of 0.6, showing the model's ability to identify patients with poor cognitive improvement. The study includes a detailed feature importance report that helps interpret the model's inner decision workings and exposes the most influential factors in the cognitive improvement prediction. The study showed that certain therapy variables (e.g., the proportion of memory and orientation executed tasks) had an important influence on the final prediction of the cognitive improvement of patients at individual and population levels. This type of evidence can serve clinicians in adjusting the therapeutic settings (e.g., type and load of therapy activities) and selecting the one that maximizes cognitive improvement
Identification of novel molecular signatures of IgA nephropathy through an integrative -omics analysis
IgA nephropathy (IgAN) is the most prevalent among primary glomerular diseases worldwide. Although our understanding of IgAN has advanced significantly, its underlying biology and potential drug targets are still unexplored. We investigated a combinatorial approach for the analysis of IgAN-relevant -omics data, aiming at identification of novel molecular signatures of the disease. Nine published urinary proteomics datasets were collected and the reported differentially expressed proteins in IgAN vs. healthy controls were integrated into known biological pathways. Proteins participating in these pathways were subjected to multi-step assessment, including investigation of IgAN transcriptomics datasets (Nephroseq database), their reported protein-protein interactions (STRING database), kidney tissue expression (Human Protein Atlas) and literature mining. Through this process, from an initial dataset of 232 proteins significantly associated with IgAN, 20 pathways were predicted, yielding 657 proteins for further analysis. Step-wise evaluation highlighted 20 proteins of possibly high relevance to IgAN and/or kidney disease. Experimental validation of 3 predicted relevant proteins, adenylyl cyclase-associated protein 1 (CAP1), SHC-transforming protein 1 (SHC1) and prolylcarboxypeptidase (PRCP) was performed by immunostaining of human kidney sections. Collectively, this study presents an integrative procedure for -omics data exploitation, giving rise to biologically relevant results
The oral microbiota in colorectal cancer is distinctive and predictive
Background and aims: Microbiota alterations are linked with colorectal cancer (CRC) and notably higher abundance of putative oral bacteria on colonic tumours. However, it is not known if colonic mucosa-associated taxa are indeed orally derived, if such cases are a distinct subset of patients or if the oral microbiome is generally suitable for screening for CRC. Methods: We profiled the microbiota in oral swabs, colonic mucosae and stool from individuals with CRC (99 subjects), colorectal polyps (32) or controls (103). Results: Several oral taxa were differentially abundant in CRC compared with controls, for example, Streptococcus and Prevotellas pp. A classification model of oral swab microbiota distinguished individuals with CRC or polyps from controls (sensitivity: 53% (CRC)/67% (polyps); specificity: 96%). Combining the data from faecal microbiota and oral swab microbiota increased the sensitivity of this model to 76% (CRC)/88% (polyps). We detected similar bacterial networks in colonic microbiota and oral microbiota datasets comprising putative oral biofilm forming bacteria. While these taxa were more abundant in CRC, core networks between pathogenic, CRC-associated oral bacteria such as Peptostreptococcus, Parvimonas and Fusobacterium were also detected in healthy controls. High abundance of Lachnospiraceae was negatively associated with the colonisation of colonic tissue with oral-like bacterial networks suggesting a protective role for certain microbiota types against CRC, possibly by conferring colonisation resistance to CRC-associated oral taxa and possibly mediated through habitual diet. Conclusion: The heterogeneity of CRC may relate to microbiota types that either predispose or provide resistance to the disease, and profiling the oral microbiome may offer an alternative screen for detecting CRC
Current Topics in Technology-Enabled Stroke Rehabilitation and Reintegration: A Scoping Review and Content Analysis
Background. There is a worldwide health crisis stemming from the rising incidence of various debilitating chronic diseases, with stroke as a leading contributor. Chronic stroke management encompasses rehabilitation and reintegration, and can require decades of personalized medicine and care. Information technology (IT) tools have the potential to support individuals managing chronic stroke symptoms. Objectives. This scoping review identifies prevalent topics and concepts in research literature on IT technology for stroke rehabilitation and reintegration, utilizing content analysis, based on topic modelling techniques from natural language processing to identify gaps in this literature. Eligibility Criteria. Our methodological search initially identified over 14,000 publications of the last two decades in the Web of Science and Scopus databases, which we filter, using keywords and a qualitative review, to a core corpus of 1062 documents. Results. We generate a 3-topic, 4-topic and 5-topic model and interpret the resulting topics as four distinct thematics in the literature, which we label as Robotics, Software, Functional and Cognitive. We analyze the prevalence and distinctiveness of each thematic and identify some areas relatively neglected by the field. These are mainly in the Cognitive thematic, especially for systems and devices for sensory loss rehabilitation, tasks of daily living performance and social participation. Conclusion. The results indicate that IT-enabled stroke literature has focused on Functional outcomes and Robotic technologies, with lesser emphasis on Cognitive outcomes and combined interventions. We hope this review broadens awareness, usage and mainstream acceptance of novel technologies in rehabilitation and reintegration among clinicians, carers and patients
The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease
The quest for the ideal therapeutic target in chronic kidney disease (CKD) has been riddled with many obstacles stemming from the molecular complexity of the disease and its co-morbidities. Recent advances in omics technologies and the resulting amount of available data encompassing genomics, proteomics, peptidomics, transcriptomics and metabolomics has created an opportunity for integrating omics datasets to build a comprehensive and dynamic model of the molecular changes in CKD for the purpose of biomarker and drug discovery. This article reviews relevant concepts in omics data integration using systems biology, a mathematical modelling method that globally describes a biological system on the basis of its modules and the functional connections that govern their behaviour. The review describes key databases and bioinformatics tools, as well as the challenges and limitations of the current state of the art, along with practical application to CKD therapeutic target discovery. Moreover, it describes how systems biology and visualization tools can be used to generate clinically relevant molecular models with the capability to identify specific disease pathways, recognize key events in disease development and track disease progression