141 research outputs found

    Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P. Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. Int J Commun Syst. 2020; 33:e4399, which has been published in final form at https://doi.org/10.1002/dac.4399. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] With the increasing number of Internet of Things (IoT) devices, current networking world is suffering in terms of management and operations with lack of IPv4 addresses leading to issues like network address translation (NAT) proliferation, security and quality of services. Software-defined networking (SDN) and Internet Protocol version 6 (IPv6) are the new networking paradigms evolved to address related issues of legacy IPv4 networking. To adapt with global competitive environment and avoid all existing issues in legacy networking system, network service providers have to migrate their networks into IPv6 and SDN-enabled networks. But immediate transformations of existing network are not viable due to several factors like higher cost of migration, lack of technical human resources, lack of standards and protocols during transitions, and many more. In this paper, we present the migration analysis for proper decision making of network transition in terms of customer demand, traffic engineering, and organizational strength with operation expenditure for network migration using evolutionary gaming approach. Joint migration to SDN-enabled IPv6 network from game theoretic perspective is modeled and is validated using numerical results obtained from simulations. Our empirical analysis shows the evolutionary process of network migration while different internal and external factors in the organization affect the overall migration. Evolutionary game in migration planning is supportive in decision making for service providers to develop suitable strategy for their network migration. The proposed approach for migration decision making is mostly applicable to fairly sustained service providers who lack economics, regulation/policy, and resources strengths.ERASMUS+, Grant/Award Number: KA107; UGC-NP, Grant/Award Number: FRG-074/75-Engg-01; NTNU-EnPE-MSESSD; US National Science Foundation, Grant/Award Numbers: CNS 1650831, HRD 1828811; NASTDawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems. 33(11):1-17. https://doi.org/10.1002/dac.4399S1173311Livadariu, I., Elmokashfi, A., & Dhamdhere, A. (2017). On IPv4 transfer markets: Analyzing reported transfers and inferring transfers in the wild. Computer Communications, 111, 105-119. doi:10.1016/j.comcom.2017.07.012Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., 
 Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676ONF TR‐506.SDN migration considerations and use cases.;2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf.Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Contreras, L. M., Doolan, P., Lþnsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003ON.LAB.Driving SDN adoption in service provider networks.;2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf.SANDVINE. Carrier grade NAT: Mitigate IPv4 address exhaustion while maintaining network visibility.https://www.sandvine.com/hubfs/Procera_Live_Site_Files/PDF_Live_Site/Solutions_brief/SB_CGNAT.pdf. Published2018. .F5. Carrier‐grade NAT (CGNAT) for service providers.https://www.f5.com/services/resources/use-cases/carrier-grade-nat-for-service-providers. Accessed September 20 2019.Trinh, T. A., Gyarmati, L., & Sallai, G. (2010). Migrating to IPv6: A game-theoretic perspective. IEEE Local Computer Network Conference. doi:10.1109/lcn.2010.5735739Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Hu, T., Yi, P., Zhang, J., & Lan, J. (2018). A distributed decision mechanism for controller load balancing based on switch migration in SDN. China Communications, 15(10), 129-142. doi:10.1109/cc.2018.8485475TaoP YingC SunZ TanS WangP SunZ.The controller placement of software‐defined networks based on minimum delay and load balancing. In:2018 IEEE 16th Intl Conf on Dependable Autonomic and Secure Computing 16th Intl Conf on Pervasive Intelligence and Computing 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).;2018:310‐313.Wang, K.-Y., Kao, S.-J., & Kao, M.-T. (2018). An efficient load adjustment for balancing multiple controllers in reliable SDN systems. 2018 IEEE International Conference on Applied System Invention (ICASI). doi:10.1109/icasi.2018.8394323Xu, H., Li, X.-Y., Huang, L., Deng, H., Huang, H., & Wang, H. (2017). Incremental Deployment and Throughput Maximization Routing for a Hybrid SDN. IEEE/ACM Transactions on Networking, 25(3), 1861-1875. doi:10.1109/tnet.2017.2657643Khorramizadeh, M., & Ahmadi, V. (2018). Capacity and load-aware software-defined network controller placement in heterogeneous environments. Computer Communications, 129, 226-247. doi:10.1016/j.comcom.2018.07.037LanW LiF LiuX QiuY.A dynamic load balancing mechanism for distributed controllers in software‐defined networking. In:2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).;2018:259‐262.TR‐506 O.SDN Migration considerations and use cases.;2014.Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., 
 McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011BabikerH NikolovaI ChittimaneniKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:Proceedings of the 25th International Conference on Large Installation System Administration.;2011:10.APNIC. IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed February 15 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Abdullah, S. A. (2019). SEUI-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks. Engineering Science and Technology, an International Journal, 22(2), 667-672. doi:10.1016/j.jestch.2018.11.012KreutzD RamosF VerissimoP RothenbergCE AzodolmolkyS UhligS.Software‐defined networking: A comprehensive survey.arXiv Prepr arXiv14060440.2014.DawadiBR RawatDB JoshiSR KeitschMM.Recommendations for energy efficient SoDIP6 network deployment at the early stage rural ICT expansion of Nepal. In: 2019International Conference on Computing Networking and Communications ICNC 2019.;2019.https://doi.org/10.1109/ICCNC.2019.8685567WintherM.Tier 1 isps: what they are and why they are important. IDC White Pap2006:1‐13.DawadiBR RawatDB JoshiSR.Evolutionary dynamics of service provider legacy network migration to software defined IPv6 network. In:International Conference on Computing and Information Technology;2019:245‐257.BriainDÓ DenieffeD KavanaghY OkelloD.A proposed architecture for distributed Internet eXchange Points in developing countries. In:2018 IST‐Africa Week Conference (IST‐Africa).;2018:Page‐‐1.ChatzisN SmaragdakisG FeldmannA.On the importance of Internet eXchange Points for today's Internet ecosystem.arXiv Prepr arXiv13075264.2013.RyanPS GersonJ.A primer on Internet exchange points for policymakers and non‐engineers.Available SSRN 2128103.2012.BogineniK.Introducing ONOS: A SDN network operating system for service providers.White Pap.2014.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Shakkottai, S., & Srikant, R. (2006). Economics of Network Pricing With Multiple ISPs. IEEE/ACM Transactions on Networking, 14(6), 1233-1245. doi:10.1109/tnet.2006.886393Weiss, M. B., & Shin, S. (2002). Internet Interconnection Economic Model and its Analysis: Peering and Settlement. Communication Systems, 215-231. doi:10.1007/978-0-387-35600-6_10De Souza, E. P., Ferreira, E. M., & Neves, A. G. M. (2018). Fixation probabilities for the Moran process in evolutionary games with two strategies: graph shapes and large population asymptotics. Journal of Mathematical Biology, 78(4), 1033-1065. doi:10.1007/s00285-018-1300-4Klimek, P., Thurner, S., & Hanel, R. (2010). Evolutionary dynamics from a variational principle. Physical Review E, 82(1). doi:10.1103/physreve.82.01190

    Mobile phones carry the personal microbiome of their owners

    Get PDF
    Most people on the planet own mobile phones, and these devices are increasingly being utilized to gather data relevant to our personal health, behavior, and environment. During an educational workshop, we investigated the utility of mobile phones to gather data about the personal microbiome — the collection of microorganisms associated with the personal effects of an individual. We characterized microbial communities on smartphone touchscreens to determine whether there was significant overlap with the skin microbiome sampled directly from their owners. We found that about 22% of the bacterial taxa on participants’ fingers were also present on their own phones, as compared to 17% they shared on average with other people’s phones. When considered as a group, bacterial communities on men’s phones were significantly different from those on their fingers, while women’s were not. Yet when considered on an individual level, men and women both shared significantly more of their bacterial communities with their own phones than with anyone else’s. In fact, 82% of the OTUs were shared between a person’s index and phone when considering the dominant taxa (OTUs with more than 0.1% of the sequences in an individual’s dataset). Our results suggest that mobile phones hold untapped potential as personal microbiome sensors

    A cost-effective SCTP extension for hybrid vehicular networks

    Get PDF
    Connected vehicles are promoted with the use of different communication technologies for diverse applications and services. There is an ongoing debate in the research and industry communities whether short range communications based on IEEE 802.11p or cellular based on 3GPP LTE should be used for vehicular communications. In this paper, we propose a mechanism to utilise both short range and cellular communications simultaneously in a cost efficient way while providing the required quality of service to the users. A host connected to multiple networks is referred to as a multi-homed node and Stream Control Transmission Protocol (SCTP) is an IETF standard which supports multi-homing. We propose an extension to SCTP that takes into account not only path quality but also the cost of using each network. It is shown that the combination of QoS and cost information increases economic benefits for provider and end-users, while providing increased packet throughput

    The 2017 Terahertz Science and Technology Roadmap

    Get PDF
    Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies

    Introduction to networks: Companion guide

    No full text
    Indianapolis, INxxxii, 681p.; 24 c

    Cisco networking academy program : V.2.: CCNP 2 : routers and routing basics V 3.1 instructor lab manual

    No full text
    Indianapolisxxvii, 606 p.; 25 c

    Scaling networks: Companion guide

    No full text
    Indianapolis, INxxiv, 607 p.; 24 c
    • 

    corecore