144 research outputs found

    The X-ray emission of z>2.5 active galactic nuclei can be obscured by their host galaxies

    Get PDF
    We present a multi-wavelength study of seven AGN at spectroscopic redshift >2.5 in the 7 Ms Chandra Deep Field South, selected to have good FIR/sub-mm detections. Our aim is to investigate the possibility that the obscuration observed in the X-rays can be produced by the interstellar medium (ISM) of the host galaxy. Based on the 7 Ms Chandra spectra, we measured obscuring column densities NH,X_{H, X} in excess of 7x1022^{22} cm−2^{-2} and intrinsic X-ray luminosities LX_{X}>1044^{44} erg s−1^{-1} for our targets, as well as equivalent widths for the Fe Kα\alpha emission line EW>0.5-1 keV. We built the UV-to-FIR spectral energy distributions by using broad-band photometry from CANDELS and Herschel catalogs. By means of an SED decomposition technique, we derived stellar masses (M∗_{*}~1011^{11} Msun), IR luminosities (LIR_{IR}>1012^{12} Lsun), star formation rates (SFR~190-1680 Msun yr−1^{-1}) and AGN bolometric luminosities (Lbol_{bol}~1046^{46} erg s−1^{-1}) for our sample. We used an empirically-calibrated relation between gas masses and FIR/sub-mm luminosities and derived Mgas_{gas}~0.8-5.4x1010^{10} Msun. High-resolution (0.3-0.7'') ALMA data (when available, CANDELS data otherwise) were used to estimate the galaxy size and hence the volume enclosing most of the ISM under simple geometrical assumptions. These measurements were then combined to derive the column density associated with the ISM of the host, on the order of NH,ISM_{H, ISM}~1023−24^{23-24} cm−2^{-2}. The comparison between the ISM column densities and those measured from the X-ray spectral analysis shows that they are similar. This suggests that, at least at high redshift, significant absorption on kpc scales by the dense ISM in the host likely adds to or substitutes that produced by circumnuclear gas on pc scales (i.e., the torus of unified models). The lack of unobscured AGN among our ISM-rich targets supports this scenario.Comment: 15 pages, 3 figures. Accepted for publication in A&

    Volatile Composition and Biological Activity of Key Lime Citrus aurantifolia Essential Oil

    Get PDF
    The essential oil of Citrus aurantifolia (Christm) Swingle fruits (limes) was studied for its potential spasmolytic effects in relation to its chemical composition. The essential oil, extracted by hydrodistillation (HD), was analyzed by GC-FID and GC-MS. The antispasmodic activity was evaluated on isolated rabbit jejunum, aorta and uterus. The results indicated that the essential oil of C aurantifolia possesses important spasmolytic properties, which are likely to be due to its major constituents, limonene (58.4%), β-pinene (15.4%), γ-terpinene (8.5%), and citral (4.4%)

    On the dust and gas content of high-redshift galaxies hosting obscured AGN in the CDF–S

    Get PDF
    Submillimeter Galaxies (SMGs) at high redshift are among the best targets to investigate the early evolutionary phases in the lifetime of massive systems, during which large gas reservoirs sustain vigorous star formation and efficiently feed the central, buried Super Massive Black Hole (SMBH), until it enters into luminous Quasar (QSO) phase, quenching the star formation. I present the analysis of new ALMA band 4 (1.8-2.4 mm) data of six obscured QSOs (log NH > 23) hosted by SMGs at redshift > 2.5 in the 7 Ms Chandra Deep Field South (CDF-S), showing their properties in terms of continuum dust emission and high-J CO transitions. Sizes and masses of the galaxies are measured to estimate whether and to which extent the host ISM may contribute to the nuclear absorption, assuming different geometries. The derived column densities suggest that the galaxy ISM can substantially contribute to the AGN obscuration. I also discuss the kinematics and morphology in some of these object, finding that two of the sources present unambiguous features of a rotating system, while a third source is possibly undergoing a merger

    On the dust and gas content of high-redshift galaxies hosting obscured AGN in the CDF–S

    Get PDF
    Submillimeter Galaxies (SMGs) at high redshift are among the best targets to investigate the early evolutionary phases in the lifetime of massive systems, during which large gas reservoirs sustain vigorous star formation and efficiently feed the central, buried Super Massive Black Hole (SMBH), until it enters into luminous Quasar (QSO) phase, quenching the star formation. I present the analysis of new ALMA band 4 (1.8-2.4 mm) data of six obscured QSOs (log NH > 23) hosted by SMGs at redshift > 2.5 in the 7 Ms Chandra Deep Field South (CDF-S), showing their properties in terms of continuum dust emission and high-J CO transitions. Sizes and masses of the galaxies are measured to estimate whether and to which extent the host ISM may contribute to the nuclear absorption, assuming different geometries. The derived column densities suggest that the galaxy ISM can substantially contribute to the AGN obscuration. I also discuss the kinematics and morphology in some of these object, finding that two of the sources present unambiguous features of a rotating system, while a third source is possibly undergoing a merger

    An investigation of the circumgalactic medium around z~2.2 AGN with ACA and ALMA

    Full text link
    While observations of molecular gas at cosmic noon and beyond have focused on the gas within galaxies (i.e., the interstellar medium; ISM), it is also crucial to study the molecular gas reservoirs surrounding each galaxy (i.e., in the circumgalactic medium; CGM). Recent observations of galaxies and quasars hosts at high redshift (z>2) have revealed evidence for cold gaseous halos of scale r_CGM~10kpc, with one discovery of a molecular halo with r_CGM~200kpc and a molecular gas mass one order of magnitude larger than the ISM of the central galaxy. As a follow-up, we present deep ACA and ALMA observations of CO(3-2) from this source and two other quasar host galaxies at z~2.2. While we find evidence for CO emission on scales of r~10kpc, we do not find evidence for molecular gas on scales larger than r>20 kpc. Therefore, our deep data do not confirm the existence of massive molecular halos on scales of ~100 kpc for these X-ray selected quasars. As an interesting by-product of our deep observations, we obtain the tentative detection of a negative continuum signal on scales larger than r>200kpc, which might be tracing the Sunyaev-Zeldovich effect associated with the halo heated by the active galactic nucleus (AGN). If confirmed with deeper data, this could be direct evidence of the preventive AGN feedback process expected by cosmological simulations.Comment: 17 pages, 12 figures. Accepted for publication in MNRA

    Analysis of the genetic variability of <i>Patella ferruginea</i> Gmelin, 1791 (Gastropoda: Patellidae) populations from the North-East Sardinia = Analisi della variabilità genetica in popolazioni di <i>Patella ferruginea</i> Gmelin, 1791 (Gastropoda: Patellidae) provenienti dalla Sardegna nord-orientale

    Get PDF
    The mollusc Patella ferruginea (Gastropoda, Patellidae), endemic to the Medilerranean, is the most endangered marine species on the list of the European Couneil Directive 92/43/EEC and it is presently under serious risk of extinction. This research was aimed to unravel the genetic variability of some Sardinian populations sampled on the North-Eastern coast, in order to shed light on their status of conservation

    ESA Voyage 2050 white paper: Unveiling the faint ultraviolet Universe

    Get PDF
    New and unique science opportunities in several different fields of astrophysics are offered by conducting spectroscopic studies of the Universe in the ultraviolet (UV), a wavelength regime that is not accessible from the ground. We present some of the scientific challenges that can be addressed with a space-based mission in 2035 - 2050. (1) By detecting the intergalactic medium in emission it will be possible to unveil the cosmic web, whose existence is predicted by current theories of structure formation, but it has not been probed yet. (2) Observations of the neutral gas distribution (by mapping the Lyman-alpha emission) in low-redshift galaxy cluster members will clarify the efficiency with which ram-pressure stripping removes the gas from galaxies and the role of the environment in quenching star formation. (3) By observing statistical samples of supernovae in the UV it will be possible to characterize the progenitor population of core-collapse supernovae, providing the initial conditions for any forward-modeling simulation and allowing the community to progress in the understanding of the explosion mechanism of stars and the final stages of stellar evolution. (4) Targeting populations of accreting white dwarfs in globular clusters it will be possible to constrain the evolution and fate of these stars and investigate the properties of the most compact systems with the shortest orbital periods which are expected to be the brightest low frequency gravitational wave sources. A UV-optimized telescope (wavelength range ~ 90 - 350 nm), equipped with a panoramic integral field spectrograph with a large field of view (FoV ~ 1 x 1 arcmin^2), with medium spectral (R = 4000) and spatial (~ 1" - 3") resolution will allow the community to simultaneously obtain spectral and photometric information of the targets, and tackle the science questions presented in this paper

    Analysis of the miRNA expression from the adipose tissue surrounding the adrenal neoplasia

    Get PDF
    BackgroundPrimary aldosteronism (PA) is characterized by several metabolic changes such as insulin resistance, metabolic syndrome, and adipose tissue (AT) inflammation. Mi(cro)RNAs (miRNAs) are a class of non-coding small RNA molecules known to be critical regulators in several cellular processes associated with AT dysfunction. The aim of this study was to evaluate the expression of some miRNAs in visceral and subcutaneous AT in patients undergoing adrenalectomy for aldosterone-secreting adrenal adenoma (APA) compared to the samples of AT obtained in patients undergoing adrenalectomy for non-functioning adrenal mass (NFA). MethodsThe quantitative expression of selected miRNA using real-time PCR was analyzed in surrounding adrenal neoplasia, peri-renal, and subcutaneous AT samples of 16 patients with adrenalectomy (11 patients with APA and 5 patients with NFA). ResultsReal-time PCR cycles for miRNA-132, miRNA-143, and miRNA-221 in fat surrounding adrenal neoplasia and in peri-adrenal AT were significantly higher in APA than in patients with NFA. Unlike patients with NFA, miRNA-132, miRNA-143, miRNA-221, and miRNA-26b were less expressed in surrounding adrenal neoplasia AT compared to subcutaneous AT in patients with APA. ConclusionThis study, conducted on tissue expression of miRNAs, highlights the possible pathophysiological role of some miRNAs in determining the metabolic alterations in patients with PA

    Submillimetre compactness as a critical dimension to understand the main sequence of star-forming galaxies

    Get PDF
    We study the interstellar medium (ISM) properties as a function of the molecular gas size for 77 infrared-selected galaxies at z ∼ 1.3, having stellar masses 109.4 ≲ M⋆ ≲ 1012.0 M⊙ and star formation rates 12 ≲ SFRFIR ≲ 1000 M⊙ yr−1. Molecular gas sizes are measured on ALMA images that combine CO(2-1), CO(5-4), and underlying continuum observations, and include CO(4-3), CO(7-6) + [CI](3P2 − 3P1), [CI](3P1 − 3P0) observations for a subset of the sample. The ≳46 per cent of our galaxies have a compact molecular gas reservoir, and lie below the optical discs mass–size relation. Compact galaxies on and above the main sequence have higher CO excitation and star formation efficiency than galaxies with extended molecular gas reservoirs, as traced by CO(5-4)/CO(2-1) and CO(2-1)/LIR, SF ratios. Average CO + [CI] spectral line energy distributions indicate higher excitation in compacts relative to extended sources. Using CO(2-1) and dust masses as molecular gas mass tracers, and conversion factors tailored to their ISM conditions, we measure lower gas fractions in compact main-sequence galaxies compared to extended sources. We suggest that the submillimetre compactness, defined as the ratio between the molecular gas and the stellar size, is an unavoidable information to be used with the main sequence offset to describe the ISM properties of galaxies, at least above M⋆ ≥ 1010.6 M⊙, where our observations fully probe the main sequence scatter. Our results are consistent with mergers driving the gas in the nuclear regions, enhancing the CO excitation and star formation efficiency. Compact main-sequence galaxies are consistent with being an early post-starburst population following a merger-driven starburst episode, stressing the important role of mergers in the evolution of massive galaxies
    • …
    corecore