50 research outputs found

    DAS: a data management system for instrument tests and operations

    Full text link
    The Data Access System (DAS) is a metadata and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.Comment: Accepted for pubblication on ADASS Conference Serie

    CIWS-FW: a Customizable InstrumentWorkstation Software Framework for instrument-independent data handling

    Get PDF
    The CIWS-FW is aimed at providing a common and standard solution for the storage, processing and quick look at the data acquired from scientific instruments for astrophysics. The target system is the instrument workstation either in the context of the Electrical Ground Support Equipment for space-borne experiments, or in the context of the data acquisition system for instrumentation. The CIWS-FW core includes software developed by team members for previous experiments and provides new components and tools that improve the software reusability, configurability and extensibility attributes. The CIWS-FW mainly consists of two packages: the data processing system and the data access system. The former provides the software components and libraries to support the data acquisition, transformation, display and storage in near real time of either a data packet stream and/or a sequence of data files generated by the instrument. The latter is a meta-data and data management system, providing a reusable solution for the archiving and retrieval of the acquired data. A built-in operator GUI allows to control and configure the IW. In addition, the framework provides mechanisms for system error and logging handling. A web portal provides the access to the CIWS-FW documentation, software repository and bug tracking tools for CIWS-FW developers. We will describe the CIWS-FW architecture and summarize the project status.Comment: Accepted for pubblication on ADASS Conference Serie

    Code Generation based on IFML for the User Interfaces of the Square Kilometre Array (SKA)

    Get PDF
    The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world’s largest radiotelescope ever built. In this context, a number of Graphical User Interfaces (GUI) have to be designed and built to be used for monitoring and control, testing, simulation, integration, commissioning and maintenance. The Tango framework and its UI tools, selected for SKA in 2015, support the types of basic control interfaces currently used at both radio telescopes and within high energy physics experiments. This paper reports on the development of a Qt/Taurus code generator prototype based on the IFML (Interaction Flow Modeling Language) standard and respective modeling tools, that are extended for supporting the platform-specific code generation. The purpose of this work is to enable the use of low-code development in SKA GUI design, thus enabling increased efficiency, reliability and coherency of the produced UI. We present a simple GUI use case as complete example of software development cycle starting from requirements and including IFML modelling, Qt/Taurus automatic coding, interface evaluation and validation

    Industrial solutions trends for the control of HiRes spectrograph@E-ELT

    Get PDF
    Starting a few years ago, ESO initiated a number of projects aiming to explore the possible adoption of industrial standards and commercial off-the-shelf components (COTS) for the control of future VLT and E-ELT instrumentations. In this context, ESPRESSO, the next generation high-stability spectrograph for the VLT and to a certain extent, a precursor of HiRes, has adopted since the preliminary design phase those solutions. Based on the ESPRESSO experience and taking into account the requirements inferred from the preliminary Hi-Res studies in terms of both high-level operations as well as low-level control, I will present in this paper the current proposal for the HiRes hardware architecture. <P /

    A PLC Distributed Layout: the Case of the Instrument Control Electronics of ESPRESSO

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the European Southern Observatory (ESO) is passing the integration phase in Geneva before being shipped to Chile and installed at the Very Large Telescope (VLT) site on the Cerro Paranal. It is going to be one of the first permanent instruments of VLT with a distributed control electronics based on Beckhoff PLCs. About 40 motorized stages, more than 90 sensors and several calibration lamps are controlled by the Instrument Control Electronics (ICE) and Software (ICS). All the ESPRESSO functionalities are managed by two main CPUs that Sshare the workload. The Beckhoff EtherCAT decentralization modules ensure the EtherCAT continuity between the 7 PLC electronics subracks placed in different cabinets, allowing optimal distributed architecture. Furthermore, one of the two CPUs is equipped with an IEEE 1588 protocol interface, used for the time synchronization of the distributed clocks in the networks. In this paper the features of the CPUs used, the distribution of functions among them, the electronic cabinets configuration and a detailed overview of the PLC control system used are presented

    ESPRESSO Instrument Control Electronics and Software: final phases before the installation in Chile.

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, is undergoing the final testing phases before being shipped to Chile and installed in the Combined Coudé Laboratory (CCL) at the European Organisation for Astronomical Research in the Southern Hemisphere - Very Large Telescope site (ESO-VLT). The integration of the instrument took place at the Astronomical Observatory of Geneva. It included the full tests of the Instrument Control Electronics (ICE) and Control Software, designed and developed at the INAF - Astronomical Observatory of Trieste. ESPRESSO is the first ESO-VLT permanent instrument whose electronics is based on Beckhoff PLCs. Two PLC CPUs shares all the workload of the ESPRESSO functions and communicates through the OPC-UA protocol with the VLT instrument control software. In this phase all the devices and subsystems of ESPRESSO are installed, connected together and verified, mimicking the final working conditions in Chile. This paper will summarize the features of the ESPRESSO control system, the tests performed during the integration in Europe and the main performances obtained before the integration of the whole instrument “on sky” in South America

    Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases. <P /

    The instrument control electronics of the ESPRESSO spectrograph @VLT

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, is a super-stable Optical High Resolution Spectrograph for the Combined Coudé focus of the Very Large Telescope (VLT). It can be operated either as a single telescope instrument or as a multi-telescope facility, by collecting the light of up to four Unit Telescopes (UTs). From the Nasmyth focus of each UT the light is fed, through a set of optical elements (Coudé Train - CT), to the Front End Unit (FEU) which performs several functions, as image and pupil stabilization, inclusion of calibration light and refocusing. The light is then conveyed into the spectrograph fibers. The whole process is handled by several electronically controlled devices. About 40 motorized stages, more than 90 sensors and several calibration lamps are controlled by the Instrument Control Electronics (ICE) and Software (ICS). The technology employed for the control of the ESPRESSO subsystems is PLC-based, with a distributed layout close to the functions to control. This paper illustrates the current status of the ESPRESSO ICE, showing the control architecture, the electrical cabinet’s organization and the experiences gained during the development and assembly phase

    EELT-HIRES the high resolution spectrograph for the E-ELT: software and hardware solutions for its control

    Get PDF
    The current E-ELT instrumentation plan foresees a High Resolution Spectrograph conventionally indicated as EELTHIRES whose Phase A study has started in March 2016. Since 2013 however, a preliminary study of a modular E-ELT instrument able to provide high-resolution spectroscopy (R 100,000) in a wide wavelength range (0.37-2.5 ÎĽm) has been already conducted by an international consortium (termed "HIRES initiative"). Taking into account the requirements inferred from this preliminary work in terms of both high-level operations as well as low-level control, we will present in this paper possible solutions for HIRES hardware and software architecture. The validity of the proposed architectural and hardware choices will be eventually discussed based also on the experience gained on a real-working instrument, ESPRESSO, the next generation high-stability spectrograph for the VLT and to certain extent the precursor of HIRES. <P /

    A complete automatization of an educational observatory at INAF-OATs

    Get PDF
    The Astronomical Observatory of Trieste (OATs), part of the Italian Institute for Astrophysics (INAF), hosts a Celestron C14 telescope, equipped with a robotic Paramount ME equatorial mount, used for public outreach. The telescope is installed inside a dome, recently upgraded with a Beckhoff PLC control system, a SIEMENS inverter for the communication with the motor of the dome's roof, and further equipment to allow the complete automatization of the system. A peculiarity of the system is that, when operating, the telescope may exceed the height of the roof: due to this fact the telescope pointing is constrained by the full opening of the roof and, oppositely, the closing of the roof is allowed only when the telescope is in park position. Appropriate sensors are installed to monitor the position of the telescope to properly handle the complete opening or closing of the roof. Several emergency operations are also foreseen, for example in case of bad weather or lost connection with the user. The PLC software has been developed using TwinCAT software. An OPC-UA server is installed in the PLC and allows the communication with a web interface. The web GUI, developed in PHP and Javascript, allows the user to perform the remote operations like switching on all the instrumentations, open the dome's roof, park the telescope and view the status of the system. Furthermore through TheSkyX software it is possible to perform the pointing of the telescope and its set up. A dedicated script, interfaced with TheSkyX, have been implemented to perform a complete automated acquisition. An appropriate data storage system is foreseen. All these elements, that cooperate to create a fully remoted controlled system, are presented in this paper
    corecore