
2019Publication Year

2021-01-26T15:36:39ZAcceptance in OA@INAF

Code Generation based on IFML for the User Interfaces of the Square Kilometre
Array (SKA)

Title

Brambilla, M.; Gasparini, M.; Pavanetto, S.; MARASSI, Alessandro; CIRAMI,
ROBERTO

Authors

10.18429/JACOW-ICALEPCS2019-WEPHA093DOI

http://hdl.handle.net/20.500.12386/30015Handle

ICALEPCS ...Series

CODE GENERATION BASED ON IFML FOR THE USER
INTERFACES OF THE SQUARE KILOMETRE ARRAY (SKA)

M. Brambilla, S. Pavanetto, M. Gasparini, Politecnico di Milano, Milano, Italy
A. Marassi†, R. Cirami, INAF-Astronomical Observatory of Trieste, Trieste, Italy

Abstract
The Square Kilometre Array (SKA) project is responsi-

ble for developing the SKA Observatory, the world's larg-
est radiotelescope ever built. In this context, a number of
Graphical User Interfaces (GUI) have to be designed and
built to be used for monitoring and control, testing, simu-
lation, integration, commissioning and maintenance. The
Tango framework and its UI tools, selected for SKA in
2015, support the types of basic control interfaces currently
used at both radio telescopes and within high energy phys-
ics experiments. This paper reports on the development of
a Qt/Taurus code generator prototype based on the IFML
(Interaction Flow Modeling Language) standard and re-
spective modeling tools, that are extended for supporting
the platform-specific code generation. The purpose of this
work is to enable the use of low-code development in SKA
GUI design, thus enabling increased efficiency, reliability
and coherency of the produced UI. We present a simple
GUI use case as complete example of software develop-
ment cycle starting from requirements and including IFML
modelling, Qt/Taurus automatic coding, interface evalua-
tion and validation.

INTRODUCTION
The Square Kilometre Array (SKA) project is responsi-

ble for developing the SKA Observatory, the world's larg-
est radiotelescope ever built: eventually two arrays of radio
antennas - SKA1-Mid and SKA1-Low - will be installed in
the South Africa's Karoo region and Western Australia's
Murchison Shire, each covering a different range of radio
frequencies. In particular, SKA1-Mid array will comprise
133 15m diameter dish antennas observing in the 350
MHz-14 GHz range, each locally managed by a Local
Monitoring and Control (LMC) system plus the 64 Meer-
KAT dishes, arranged in a dense core with quasi-random
distribution, and spiral arms going out to create the long
baselines that go up to 200km [1] and remotely orches-
trated by the SKA Telescope Manager (TM) system.

Four sub-elements can be identified in the SKA-Mid1
dish element: the Dish Structure (DS), the Single Pixel
Feed (SPF), the Receiver (Rx) and the Local Monitoring
and Control as described in [1].

Dish LMC will provide a Graphical User Interface (GUI)
to be used for monitoring and Dish control in standalone
mode for testing, TM simulation, integration, commission-
ing and maintenance.

The performed technological prototyping of Qt and Tau-
rus based upon Python and PyQt has shown they fulfill the

basic SKA.DISH UI requirements and could be used to im-
plement desktop UIs like SKA.DISH UIs.

Therefore, we focused on the development of a Qt/Tau-
rus code generator prototype based on the IFML (Interac-
tion Flow Modeling Language) standard, with the aim of
automating the user interface implementation production.

The purpose of this work is to enable the use of low-code
development in SKA GUI design, thus enabling increased
efficiency, reliability and coherency of the produced UI.
We present a simple GUI use case as complete example of
software development cycle starting from requirements
and including IFML modelling, Qt/Taurus automatic cod-
ing, interface evaluation and validation.

The paper is organized as follows: we first introduce the
features required in the SKA.DISH LMC user interface,
then we discuss the background concepts and technologies
that are foundational for our approach, spanning usability,
accessibility, user-centered design and Tango control. We
describe our user-centered design activities and then we de-
scribe the model-driven development process for graphical
user interfaces using IFML.

DISH USER INTERFACES
In the present paper we are considering SKA.DISH en-

gineering user interfaces to be used by engineers for test,
diagnostic, maintenance of DSH sub-elements, already
identified and described in [1].

In particular, we have chosen to design and model LMC
Engineering Interface. DSH sub-elements engineering in-
terfaces will be accessible either directly from LMC (to be
connected with keyboard/mouse and a screen) as desktop
application.

LMC will provide GUIs to be used for testing and DISH
control in stand-alone mode for testing, commissioning
and maintenance, offering basic functionalities of DSH
control & monitoring, set-up, control and testing, health
monitoring, alarm management, lifecycle support, direct
access monitoring in case of TM failure.

BACKGROUND CONCEPTS
Usability and Accessibility

The ISO 9241 standard Ergonomics of Human-System
Interaction (ISO, 2008) defines usability as “the extent to
which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfac-
tion in a specified context of use”, specifying:

• Effectiveness: the accuracy and completeness with
which users achieve specified goals

--

† marassi@oats.inaf.it

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA093

User Interfaces, User Perspective, and User Experience(UX)
WEPHA093

1307

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• Efficiency: the resources expended in relation to the ac-
curacy and completeness with which users achieve
goals

• Satisfaction: the comfort and acceptability of use

The ISO 9241 standard Ergonomics of Human-System
Interaction (ISO, 2008) focuses on important, but rather
difficult to measure goals: effectiveness, efficiency, and
satisfaction. For a practical evaluation heuristics may be
used or direct usability measures, such as: Time to learn,
Speed of performance, Rate of errors by users, Retention
over time, Subjective satisfaction.

Accessibility is the degree to which a product, device,
service, or environment is available to as many people as
possible. Accessibility can be viewed as the "ability to ac-
cess" and benefit from some system or entity. The concept
often focuses on people with disabilities or special needs
(such as the Convention on the Rights of Persons with Dis-
abilities) and their right of access, enabling the use of as-
sistive technology.

Usage-Centered Design
A Usage-Centered Design (UCD) approach [1] for inter-

active software applications is based on the early involve-
ment of users of the application from its conception. In
practical terms, it means that, in order to achieve high usa-
bility standard, feedback offered by users is to be consid-
ered in analysis phases, as well as in design and evaluation.
The design process has to be iterative also because building
a usable UI requires all those involved in its construction
to understand, and actually conceive, the mental model that
users will have of the application. Each iteration is based
on design-prototype-evaluate activities, whereas the evalu-
ation is based on usability criteria.

In order to be effective (i.e. produce results that are valid
and useful) and efficient (and therefore be sustainable), us-
ers need to be involved in structured ways, not simply by
asking them casual questions and looking for their opin-
ions. Techniques that can be put in place to follow a UCD
approach include structured interviews, contextual enquir-
ies, sketching, storyboarding, user testing, writing scenar-
ios and personas, among others [2-5].

Tango Controls
Tango Controls is a free open source device-oriented

controls toolkit for controlling any kind of hardware or
software and building SCADA (supervisory control and
data acquisition) systems. Tango Controls is operating sys-
tem and hardware independent and supports C++, Java and
Python for all the components. Tango Controls has proven
itself as a mature and reliable toolkit with many users, and
as an open source is always being improved. It is used in
synchrotron as well as in industrial and other scientific fa-
cilities. Tango Controls has been enriched with many ap-
plications (desktop and web based), among which GUI
building tools such as Taurus and Qtango.

QTango is based on C++ and Qt and consists of classes
and widgets that interact with the Tango control system,

while providing an easy API to the programmer and full
integration with the Qt4 designer.

Taurus is a Python framework, based on Python and
PyQt or PySide, for control and data acquisition CLIs and
GUIs in scientific/industrial environments. It supports
multiple control systems or data sources, among which
Tango Controls itself and EPICS.

Taurus provides a set of basic widgets (labels, LEDs, ed-
itors, forms, plots, tables, buttons, synoptics,…) that ex-
tend related Qt widgets with the capability of attaching to
Taurus core models in order to display and/or change their
data in pre-defined ways. Taurus allows the creation of
fully-featured GUI (with forms, plots, synoptics, etc.) from
scratch in a few minutes using a “wizard” (Taurus
Qt Designer), which can also be customized and expanded
by drag-and-dropping elements around at execution time.
It also gives full control to more advanced users to create
and customize CLIs and GUIs programmatically using Py-
thon and a very simple and economical API which abstracts
data sources as “models”. The Qt designer will produce a
.ui file that is an XML representation of the applica-
tion/widget that you designed. The Qt designer will pro-
duce a .ui file that is an XML representation of the applica-
tion/widget that you designed. The resulting .ui file is au-
tomatically transformed into python code with a specific
command.

USER CENTERED DESIGN ACTIVITIES
Considering the lessons learned by SKA precursors and

the inherent complexity of SKA systems and interactions,
a user-centered design approach has been adopted.

Starting from the set of requirements on LMC GUIs ob-
jectives, users and tasks, the analysis identified users (en-
gineers, software maintainers) together with their roles and
activities, together with the main usage scenarios of the in-
terfaces by means of use case diagrams. Based on this, the
method derives design objectives and validates a possible
user interface (implemented through sketches with
Balsamiq Mockups), thus allowing to explore several de-
sign ideas such as the interaction models and the features
to implement.

All the above DISH LMC GUIs Usage Centered Design
activities have been carried out as part of the tasks per-
formed in the so-called SKA pre-construction phase by the
SKA.DISH consortium (SKADC).

INAF – Catania Astrophysical Observatory, as member
of the SKA.DISH consortium, had the responsibility of
DISH LMC design, prototyping, testing and validation.

Figure 1 shows one of the interactive sketches that were
produced during the design process of the UI. It shows a
panel dedicated to the Dish LMC engineering interface. It
allows the user to open also the other Dish sub-elements
UIs and to get back to a main menu in which further high
level selections are available. The main part of the panel
consists of a simple tabs bar implementing a flat menu of
options and controls windows to be chosen and opened by
the user via a simple click. The open window actually
shows the Tango Alarms Managements GUI designed and
implemented at Elettra.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA093

WEPHA093
1308

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 1: Sketch of a screen of DISH LMC engineering in-
terface showing the alarm management UI.

MODEL DRIVEN DEVELOPMENT
OF THE GUI

A conceptual tool that can be used in user-centered de-
sign of user interfaces is conceptual modeling of the user
interactions. Interaction design focuses on expressing the
content, user interaction, and control behavior of the front-
end of software applications through visual diagrams that
represent the navigation paths of the user. Conceptual mod-
eling supports the formal specification of the different per-
spectives of the front-end (content, interface composition,
interaction and navigation options, and connection with the
business logic and the presentation); it separates the stake-
holder concerns by isolating the specification of the front-
end from its implementation-specific issues; and it enables
the communication of interface and interaction design to
non-technical stakeholders, permitting early validation of
requirements.

Various languages, approaches and tools exist to support
this task. Among them, we select the Interaction Flow
Modeling Language (IFML), an international standard pro-
posed by the OMG (www.ifml.org) [6]. IFML has been de-
signed for expressing the content, user interaction and con-
trol behaviour of the front-end of software applications.
IFML does not cover the modeling of the presentation is-
sues (e.g., layout, style and look-and-feel) of an application
front-end. IFML integrates with other mainstream software
modeling languages like UML and BPMN, and covers the
following design perspectives: the view structure and con-
tent specification; the events and their effects; the input-
output parameter bindings between elements; and the ref-
erence to business actions triggered by the user’s events.
Several extensions of IFML exist covering Web, mobile,
and IoT-based applications.

Interaction modeling through IFML is instrumental to
provide a clear conceptual view of the user interfaces, as
well as to provide a formal representation of it, which can
lead to automatic validation and quick prototype genera-
tion on the target platform of choice. Indeed, some tools
exist that check the validity of IFML models and compute
their properties, based on Petri-Nets or LTL formalization.

Figure 2 shows a (partial) conceptual model designed
with IFML for the user interface reported in Fig. 1, where

the model highlights the structure of the interfaces in terms
of main windows and, for the LMC main menu window,
also the organization in panels, which are represented as
XOR sub-screens, because they will always be shown once
at a time.

Figure 2: Partial IFML conceptual model of DISH LMC
engineering interface.

The opened panel (Alarms) contains the list of alarms
and the two options available, i.e., the possibility of ac-
knowledging all alarms at once, or only a selected subset
of them.

Various implementation frameworks and tools exist for
IFML, which also feature code generators that can produce
running applications out of IFML models, such as
WebRatio Web Platform (http://www.webratio.com), a
model-driven development tool which implements the
Web-extended version of IFML, and IFMLEdit
(http://info.ifmledit.org), an online environment for the
specification of IFML models, the investigation of their
properties by means of a mapping to Place Chart Nets, and
the generation of code for web and mobile architecture,
based on continuous deployment and agile methods. These
tools and environment can be combined with runtime be-
haviour analysis, through a model-driven engineering ap-
proach that combines user interaction models with user
tracking information and details about the visualized con-
tent in the pages [7]. The integration of modeling languages
for user interaction development and usage log analytics
approaches has high potential of delivering valuable in-
sights to designers and decision makers on the continuous
improvement process of applications.

Generation of Taurus UIs from IFML
In this work we exploit IFML as a conceptual modeling

language, and IFMLEdit.org as implementation platform
for specifying a full model-driven development process
with automated code generation for Qt/Taurus.

To this end, we apply the practices of model-driven
software development (MDD), which entails automation of
some of the steps of the development process. Software
development automation consists of starting from a high
level conceptual representation of the desired software
features (typically described as conceptual models) and

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA093

User Interfaces, User Perspective, and User Experience(UX)
WEPHA093

1309

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

deriving a running application out of it, possibly through a
set of intermediate steps to enable some degree of
customization of the generation process.

Typically, when following an MDD approach, the
running application can be obtained through one or more
model transformations that subsequently produce a more
and more refined version of the software description, until
an executable version of it is reached, as shown in Fig. 3.
As one can see in the figure, models are (semi)-
automatically generated using model-to-model
transformations taking as input the models obtained in the
previous phase. In particular, one can start from conceptual
models of requirements, and then transform them into
design models through a model-to-model (M2M)
transformation, while in the last step, the final code is
generated by means of a model-to-text (M2T)
transformation from the design models. Analogously, also
test cases can be generated automatically.

Figure 3: The model-driven development process.

More specifically, in our work we focus on the Design
and Implementation phases. Figure 4 describes the MDD
framework implemented in our specific case. The designer
of IFML models specifies the conceptual interaction
models in a visual model editor, like IFMLedit. Automatic
code generation can encompass two different scenarios:

• One click interface generation: in this case the model-
to-text transformation generated directly QT/Taurus
code, ready to be deployed and executed, so that end
users can directly work on the running interfaces;

• Human-in-the-loop generation: in this case the trans-
formation produces an intermediate artifact to be fed
into QT/Taurus editors (like Taurus Qt Designer), so
that interface designers can update the generated inter-
faces through manual refinements and extensions. In
turn, the edited project is then used for generating the
final Taurus code to be deployed, through the native
model-to-text transformation implemented by Taurus
Qt Designer.

The advantages of the latter approach stand in a much
broader configurability of interfaces, while on the negative
side the effect of this is a misalignment between the
customized versions edited in the editor with respect to the
conceptual models described in IFML.

Based on this assessment, and considering that the first
objective we want to achieve in control systems for large-
scale research infrastructures like SKA is self-coherency of
the application, we opted for direct QT/Taurus code
generation.

1 https://github.com/DataSciencePolimi/IFML-to-QT-Taurus-SKA

Starting from IFML models, our prototype implements a
full code generator for Qt/Taurus. The implementation is
written in Javascript, so as to be fully integrated with
IFMLedit.org. The implementation of the generator is
integrated with the IFMLedit.org editor, and is available as
open source code on Github under the Apache 2.0 license1.

Figure 4: The model-driven process for generating
QT/Taurus code for the LMC SKA Dish interface.

The generation process considers in input a simple set of
IFML items and builds a mapping to QT/Taurus
implementation elements in a straightforward way. Table 1
shows an excerpt of the most important element mappings.

Table 1 Excerpt of Important Mappings between IFML
Concepts and QT / Taurus Elements

IFML Concept QT Implementation

IFML Model Qt Gui

View Container Qt Window

Nested View Container Qt TabWidget

View Component:
Form (with Fields)

Qt Form
(with fields and text labels)

View Component:
List

Qt Table
(with columns)

As an example, Fig. 5 reports a simple excerpt of IFML
model and Fig. 6 describes a (partial) listing of the
corresponding generated code.

Figure 5: IFML model with one main screen and two
internal tabs, to be shown in mutual exclusion.

:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA093

WEPHA093
1310

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 6: Excerpt of generated code for the interface
modelled in Figure 5.

CONCLUSIONS
Control of large-scale scientific infrastructures like SKA

requires coherent and effective user interfaces that can be
specified only through on usage-centered development
practices. UIs implemented through model-driven devel-
opment and automation of the code generation process can
obtain highly configurable and yet standardized interfaces
as requested. In this work we demonstrated the feasibility
of the approach and we reported on the implementation of
a prototype of code generator. Future work will include the
extension of the generator and field-testing of the generated
interfaces.

Since code generation allows for very quick rounds of
development of new versions of the interface, we plan to
integrate the current approach with intelligent semi-auto-
matic methods (possibly implemented through machine
learning techniques), that will try to automatically optimize
the quality of the interfaces based on some quantitative
metrics of user performance on the interface.

REFERENCES
[1] Marassi A., Brambilla M. et al., “The SKA Dish Local Mon-

itoring and Control System User Interface”, in Proc. SPIE As-
tronomical Telescopes + Instrumentation, 2018, Austin,
Texas, United States doi.org/10.1117/12.2313822

[2] Constantine, L. and Lockwood, L., Software for Use: A Prac-
tical Guide to the Models and Methods of Usage-Centered
Design, Addison-Wesley Professional, 1999.

[3] Greenberg S., Carpendale S., Marquardt N. and Buxton B,
Sketching User Experiences: The Workbook, Morgan Kauf-
mann, 2011.

[4] Rosson M.B. and Carroll J.M., Usability Engineering: Sce-
nario-Based Development of Human-Computer Interaction,
Morgan Kaufmann, 2001.

[5] Preece J., Sharp H. and Rogers Y., Interaction Design: Be-
yond Human-Computer Interaction, Wiley, 2015.

[6] Marco Brambilla and Piero Fraternali, Interaction Flow Mod-
eling Language: Model-Driven UI Engineering of Web and
Mobile Apps with IFML, Morgan Kaufmann, 2014.

[7] Carlo Bernaschina, Marco Brambilla, Andrea Mauri, and Eric
Umuhoza “A Big Data Analysis Framework for Model-Based
Web User Behavior Analytics” in Proc. International Confer-
ence on Web Engineering, Rome, Italy, Springer, 2017,
pp. 98-114.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA093

User Interfaces, User Perspective, and User Experience(UX)
WEPHA093

1311

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

