11 research outputs found

    Exact parent Hamiltonians of bosonic and fermionic Moore-Read states on lattices and local models

    No full text
    We introduce a family of strongly-correlated spin wave functions on arbitrary spin-1/2 and spin-1 lattices in one and two dimensions. These states are lattice analogues of Moore-Read states of particles at filling fraction 1/q, which are non-Abelian Fractional Quantum Hall states in 2D. One parameter enables us to perform an interpolation between the continuum limit, where the states become continuum Moore-Read states of bosons (odd q) and fermions (even q), and the lattice limit. We show numerical evidence that the topological entanglement entropy stays the same along the interpolation for some of the states we introduce in 2D, which suggests that the topological properties of the lattice states are the same as in the continuum, while the 1D states are critical states. We then derive exact parent Hamiltonians for these states on lattices of arbitrary size. By deforming these parent Hamiltonians, we construct local Hamiltonians that stabilize some of the states we introduce in 1D and in 2D.Comment: 15 pages, 7 figure

    Quantum spin Hamiltonians for the SU(2)_k WZW model

    Full text link
    We propose to use null vectors in conformal field theories to derive model Hamiltonians of quantum spin chains and corresponding ground state wave function(s). The approach is quite general, and we illustrate it by constructing a family of Hamiltonians whose ground states are the chiral correlators of the SU(2)_k WZW model for integer values of the level k. The simplest example corresponds to k=1 and is essentially a nonuniform generalization of the Haldane-Shastry model with long-range exchange couplings. At level k=2, we analyze the model for N spin 1 fields. We find that the Renyi entropy and the two-point spin correlator show, respectively, logarithmic growth and algebraic decay. Furthermore, we use the null vectors to derive a set of algebraic, linear equations relating spin correlators within each model. At level k=1, these equations allow us to compute the two-point spin correlators analytically for the finite chain uniform Haldane-Shastry model and to obtain numerical results for the nonuniform case and for higher-point spin correlators in a very simple way and without resorting to Monte Carlo techniques.Comment: 38 pages, 6 figure

    Entanglement of excited states in critical spin chians

    Full text link
    Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the Conformal Field Theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done in reference (Alcaraz et. al., Phys. Rev. Lett. 106, 201601 (2011)), of which this work is a completion. An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c=1,1/2 universality classes. Oscillations of the Renyi entropy in excited states and descendant fields are also discussed.Comment: 23 pages, 13 figure

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Entanglement entropy of two disjoint blocks in XY chains

    Full text link
    We study the Renyi entanglement entropies of two disjoint intervals in XY chains. We exploit the exact solution of the model in terms of free Majorana fermions and we show how to construct the reduced density matrix in the spin variables by taking properly into account the Jordan-Wigner string between the two blocks. From this we can evaluate any Renyi entropy of finite integer order. We study in details critical XX and Ising chains and we show that the asymptotic results for large blocks agree with recent conformal field theory predictions if corrections to the scaling are included in the analysis correctly. We also report results in the gapped phase and after a quantum quench.Comment: 34 pages, 11 figure

    Entanglement entropy of excited states

    No full text
    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling
    corecore