618 research outputs found

    Quantum nonlocality in the presence of superselection rules and data hiding protocols

    Get PDF
    We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum-nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.Comment: 4 page

    Fermionic Atoms in Optical Superlattices

    Full text link
    Fermionic atoms in an optical superlattice can realize a very peculiar Anderson lattice model in which impurities interact with each other through a discretized set of delocalized levels. We investigate the interplay between Kondo effect and magnetism under these finite-size features. We find that Kondo effect can dominate over magnetism depending on the parity of the number of particles per discretized set. We show how Kondo-induced resonances of measurable size can be observed through the atomic interference pattern

    Entanglement capabilities of non-local Hamiltonians

    Get PDF
    We quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We give a procedure for optimizing the generation of entanglement. We also show that a Hamiltonian can create more entanglement if one uses auxiliary systems.Comment: replaced with published version, 4 pages, no figure

    Complete Characterization of a Quantum Process: the Two-Bit Quantum Gate

    Get PDF
    We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer.Comment: Accepted for publication in Physical Review Letters 08Nov96 (submitted 15Jly96

    Superconducting Vortex Lattices for Ultracold Atoms

    Full text link
    We propose and analyze a nanoengineered vortex array in a thin-film type-II superconductor as a magnetic lattice for ultracold atoms. This proposal addresses several of the key questions in the development of atomic quantum simulators. By trapping atoms close to the surface, tools of nanofabrication and structuring of lattices on the scale of few tens of nanometers become available with a corresponding benefit in energy scales and temperature requirements. This can be combined with the possibility of magnetic single site addressing and manipulation together with a favorable scaling of superconducting surface-induced decoherence.Comment: Published Version. Manuscript: 5 pages, 3 figures. Supplementary Information: 11 pages, 7 figure

    Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions

    Get PDF
    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in one- and two-dimensional lattices. In our scheme, two internal atomic states represent a pseudo-spin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce non-trivial Berry phases in the spin lattice, thus opening new avenues for realizing novel topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well known spin models.Comment: 18 pages, 10 figure

    Creation of a molecular condensate by dynamically melting a Mott-insulator

    Full text link
    We propose creation of a molecular Bose-Einstein condensate (BEC) by loading an atomic BEC into an optical lattice and driving it into a Mott insulator (MI) with exactly two atoms per site. Molecules in a MI state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the MI is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.Comment: minor revisions, 5 pages, 3 figures, REVTEX4, accepted by PRL for publicatio

    Thermal evolution of the Schwinger model with Matrix Product Operators

    Full text link
    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.Comment: 6 pages, 11 figure

    Dynamical Cooling of Trapped Gases I: One Atom Problem

    Full text link
    We study the laser cooling of one atom in an harmonic trap beyond the Lamb-Dicke regime. By using sequences of laser pulses of different detunings we show that the atom can be confined into just one state of the trap, either the ground state or an excited state of the harmonic potential. The last can be achieved because under certain conditions an excited state becomes a dark state. We study the problem in one and two dimensions. For the latter case a new cooling mechanism is possible, based on the destructive interference between the effects of laser fields in different directions, which allows the creation of variety of dark states. For both, one and two dimensional cases, Monte Carlo simulations of the cooling dynamics are presented.Comment: LaTeX file with 8 pages, 7 eps figures. Submitted to Phys. Rev.

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia
    • …
    corecore