3,215 research outputs found

    Estimations of length-weight relationships and consumption rates of odontocetes in the Mediterranean Sea from stranding data

    Get PDF
    Stranding data provide fundamental information on biometric traits of cetaceans useful to increase knowledge on ecological traits and their consumption patterns. In this study, the length weight (L-W) relationships through the power regression model (W = a ×Lb ) were calculated for three dolphin species (the striped dolphin, the common bottlenose dolphin and the Risso’s dolphin) in several Mediterranean subregions and at the scale of the entire basin. Length (L) and weight (W) data were collected from stranding records during the period from 1983 to 2021 acquired from several databases and the literature. Starting from L-W relationships, a bootstrap method was applied to estimate the mean body weights, the daily ingested biomass (IB) and annual food consumption (AFC) rates of different dolphin species. In particular, four different equations were used to estimate the IB rates. Prey consumption by dolphin species was calculated through AFC rates and the available diet information (expressed in weight fractions) of dolphin species for different Mediterranean subregions. Considering the L-W relationships in the Mediterranean Sea, b coefficient values were equal to 2.578, 2.975 and 2.988 for the striped, the common bottlenose and the Risso’s dolphin, respectively. At the Mediterranean scale, the AFC values estimated were 3913 kg (CI 2469–5306) for the Risso’s dolphin, 2571 kg (1372–3963) for the common bottlenose dolphin and 1118 kg (531–1570) for the striped dolphin. Prey consumption pattern showed a clear partitioning among the investigated species, where the common bottlenose dolphin exploits neritic demersal and pelagic fishes (e.g. eel fishes, sparids), the striped dolphin exploits mesopelagic fishes and myctophids, and the Risso’s dolphin was specialized on bathyal cephalopods of Histioteuthidae family. The results obtained in this study provide new information for the investigated species in several Mediterranean subregions providing a first consistent baseline to support the population dynamics modelling. At the same time, the wide uncertainty ranges of some parameters, as well as the lack of information for some species, stress the necessity of improving the data collection associated to stranding events, especially in the southern Mediterranean areas

    Top-down cascading effects driven by the odontocetes in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea)

    Get PDF
    An investigation of the marine food web in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea) was carried out to explore the top-down cascading effects driven by the Odontocetes. The food web was analysed by a mass-balance model using 51 functional groups and detailing the trophic impacts of the striped and common bottlenose dolphins, the Risso's dolphin and the sperm whale during the period 2010-2014. Odontocetes resulted top-predators with the highest TL estimated for the Risso's dolphin (TL=5.40) and the lowest for the common bottlenose dolphin (TL=4.47). The striped dolphin played the highest top-down control, showing cascading effects up to the 3rd TL. The Risso's dolphin and the sperm whale played similar cascading effects, but weaker than the striped dolphin. Understanding pattern and strengthen of trophic controls played by the Odontocetes within the food web could contribute to identify the basal mechanisms involved in the ecosystem functioning

    Application of a multi-species bio-economic modelling approach to explore fishing traits within eligible cetacean conservation areas in the Northern Ionian Sea (Central Mediterranean Sea)

    Get PDF
    The assessment of the spatial overlap between eligible cetacean conservation areas (CCAs) and fishing grounds could be a strategic element in the implementation of effective conservation measures in the pelagic offshore areas. A multi-species bio-economic modelling approach has been applied to estimate the fishing traits in eligible CCAs in the Northern Ionian Sea (NIS, Central Mediterranean Sea) between 10-800 m of depth, adopting the Spatial MAnagement of demersal Resources for Trawl fisheries model (SMART). Four possible CCAs were defined according to the distribution of cetacean species, their bio-ecological needs, as well as socio-economic needs of human activities, identifying a Blue, Red, Orange and Green CCAs in the NIS. SMART spatial domain was a grid with 500 square cells (15x15 NM). The analysis was conducted for the period 2016-2019, considering the Otter Trawl Bottom (OTB) fleet activities in the study areas through the Vessel Monitoring System. The spatial extension of fishing activities, hourly fishing effort (h), landings (tons) and economic value (euros) for each CCA and the NIS were estimated as yearly median values. Fishing activities were absent in the Blue CCA, where the presence of the submarine canyon head does not offer accessible fishing grounds. The hourly fishing effort in the Green area accounted for about 22% (3443 h) of the total hourly effort of the NIS, while the Orange and Red areas were about 8% (1226 h) and 2% (295 h), respectively. The Green CCA corresponded to about 14% (36 tons) of the total landings in the NIS, whereas the Orange and Red areas represented about 9% (22 tons) and 6% (16 tons), respectively. The Green CCA accounted for about 13% (156 thousand euros) of the total economic value of the NIS, while the Orange and Red areas represented about 6% (69 thousand euros) and 4% (44thousand euros), respectively. Results showed no or negligible negative effects on trawl activities by potential spatial restrictions due to the establishment of CCAs highlighting the importance to consider spatially integrated information during the establishment process of conservation areas for cetacean biodiversity according to the principles of Ecosystem Based Management

    Addressing cetacean–fishery interactions to inform a deep-sea ecosystem-based management in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea)

    Get PDF
    Understanding of cetaceans’ trophic role and the quantification of their impacts on the food web is a critical task, especially when data on their prey are linked to deep-sea ecosystems, which are often exposed to excessive exploitation of fishery resources due to poor management. This aspect represents one of the major issues in marine resource management, and trade-offs are needed to simultaneously support the conservation of cetaceans and their irreplaceable ecological role, together with sustainable fishing yield. In that regard, food web models can represent useful tools to support decision-making processes according to an ecosystem-based management (EBM) approach. This study provides a focus on the feeding activity occurrence and the trophic interactions between odontocetes and the fishery in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea), by zooming in on cetaceans’ prey of commercial interest. In particular, the quantification of trophic impacts is estimated using a food web mass-balance model that integrates information on the bathymetric displacement of both cetaceans’ prey and fishing activity. The results are discussed from a management perspective to guide future research and knowledge enhancement activities as well as support the implementation of an EBM approach

    Fruit quality of Chenin Blanc grape influenced by different rootstocks during a production cycle in the second half.

    Get PDF
    This study aimed to evaluate the influence of different rootstocks on physico-chemical characteristics of the fruits of Chenin Blanc grapes produced in the second half of the year

    Inferior Alveolar Canal Automatic Detection with Deep Learning CNNs on CBCTs: Development of a Novel Model and Release of Open-Source Dataset and Algorithm

    Get PDF
    Featured Application Convolutional neural networks can accurately identify the Inferior Alveolar Canal, rapidly generating precise 3D data. The datasets and source code used in this paper are publicly available, allowing the reproducibility of the experiments performed. Introduction: The need of accurate three-dimensional data of anatomical structures is increasing in the surgical field. The development of convolutional neural networks (CNNs) has been helping to fill this gap by trying to provide efficient tools to clinicians. Nonetheless, the lack of a fully accessible datasets and open-source algorithms is slowing the improvements in this field. In this paper, we focus on the fully automatic segmentation of the Inferior Alveolar Canal (IAC), which is of immense interest in the dental and maxillo-facial surgeries. Conventionally, only a bidimensional annotation of the IAC is used in common clinical practice. A reliable convolutional neural network (CNNs) might be timesaving in daily practice and improve the quality of assistance. Materials and methods: Cone Beam Computed Tomography (CBCT) volumes obtained from a single radiological center using the same machine were gathered and annotated. The course of the IAC was annotated on the CBCT volumes. A secondary dataset with sparse annotations and a primary dataset with both dense and sparse annotations were generated. Three separate experiments were conducted in order to evaluate the CNN. The IoU and Dice scores of every experiment were recorded as the primary endpoint, while the time needed to achieve the annotation was assessed as the secondary end-point. Results: A total of 347 CBCT volumes were collected, then divided into primary and secondary datasets. Among the three experiments, an IoU score of 0.64 and a Dice score of 0.79 were obtained thanks to the pre-training of the CNN on the secondary dataset and the creation of a novel deep label propagation model, followed by proper training on the primary dataset. To the best of our knowledge, these results are the best ever published in the segmentation of the IAC. The datasets is publicly available and algorithm is published as open-source software. On average, the CNN could produce a 3D annotation of the IAC in 6.33 s, compared to 87.3 s needed by the radiology technician to produce a bidimensional annotation. Conclusions: To resume, the following achievements have been reached. A new state of the art in terms of Dice score was achieved, overcoming the threshold commonly considered of 0.75 for the use in clinical practice. The CNN could fully automatically produce accurate three-dimensional segmentation of the IAC in a rapid setting, compared to the bidimensional annotations commonly used in the clinical practice and generated in a time-consuming manner. We introduced our innovative deep label propagation method to optimize the performance of the CNN in the segmentation of the IAC. For the first time in this field, the datasets and the source codes used were publicly released, granting reproducibility of the experiments and helping in the improvement of IAC segmentation

    Dog skin parasite load, TLR-2, IL-10 and TNF-α expression and infectiousness

    Get PDF
    Visceral leishmaniosis is a zoonotic disease that is transmitted by Lutzomyia longipalpis sandflies. Dogs are the main peri-urban reservoir of the disease, and progression of canine leishmaniosis is dependent on the type of immune response elaborated against the parasite. Type 1 immunity is characterized by effective cellular response, with production of pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α). In contrast, Type 2 immunity is predominantly humoral, associated with progression of the disease and mediated by anti-inflammatory cytokines such as interleukin 10 (IL-10). Although seemly important in the dynamics of leishmaniosis, other gene products such as toll-like receptor 2 (TRL-2) and inducible nitric oxide synthase (iNOS) exert unclear roles in the determination of the type of immune response. Given that the dog skin serves as a micro-environment for the multiplication of Leishmania spp., we investigated the parasite load and the expression of TLR-2, iNOS, IL-10 and TNF-α in the skin of 29 infected and 8 control dogs. We found that increased parasite load leads to upregulation of TLR-2, IL-10 and TNF-α, indicating that abundance of these transcripts is associated with infection. We also performed a xenodiagnosis to demonstrate that increased parasitism is a risk factor for infectiousness to sandflies

    Intronic determinants coordinate charme lncRNA nuclear activity through the interaction with MATR3 and PTBP1

    Get PDF
    Chromatin architect of muscle expression (Charme) is a muscle-restricted long noncoding RNA (lncRNA) that plays an important role in myogenesis. Earlier evidence indicates that the nuclear Charme isoform, named pCharme, acts on the chromatin by assisting the formation of chromatin domains where myogenic transcription occurs. By combining RNA antisense purification (RAP) with mass spectrometry and loss-of-function analyses, we have now identified the proteins that assist these chromatin activities. These proteins—which include a sub-set of splicing regulators, principally PTBP1 and the multifunctional RNA/DNA binding protein MATR3—bind to sequences located within the alternatively spliced intron-1 to form nuclear aggregates. Consistent with the functional importance of pCharme interactome in vivo, a targeted deletion of the intron-1 by a CRISPR-Cas9 approach in mouse causes the release of pCharme from the chromatin and results in cardiac defects similar to what was observed upon knockout of the full-length transcript

    Intragastric gastric band migration: erosion: an analysis of multicenter experience on 177 patients

    Get PDF
    BACKGROUND: Laparoscopic adjustable gastric banding (LAGB) has proven to be a safe and effective surgical treatment for morbid obesity. It can be a simple, fast, reversible, anatomy-preserving procedure. Despite these advantages, its long-term efficacy came into question by the occurrence of complications such as intragastric band migration. Consistent information regarding this complication is still lacking. Treatment for migration is still being debated as well. Most of the inconsistencies of these data stem from the very low number of patients reported in single-center experiences or case reports. Lack of multicenter experience is evident. The aim of this study was to perform a retrospective analysis of data on intragastric migration in a large multicenter cohort of patients who underwent LAGB. METHODS: A retrospective multicenter study on LAGB patients was performed. Data had been entered into a prospective database of the Italian Group for LapBand(Ÿ) (GILB) since January 1997. Pars flaccida and perigastric positioning were considered along with different kinds of gastric bands by the same manufacturer. Time of diagnosis, mean body mass index (BMI), presentation symptoms, and conservative and surgical therapy of intragastric migration were considered. RESULTS: From January 1997 to December 2009, a total of 6,839 patients underwent LAGB and their data were recorded [5,660 females, 1,179 males; mean age 38.5 ± 18.2 years (range 21-62 years); mean BMI = 46.7 ± 7.7 kg/m(2) (range 37.3-68.3); excess weight (EW) 61.8 ± 25.4 kg (range 36-130); %EW 91.1 ± 32.4 % (range 21-112 %)]. A total of 177 of 6,839 (2.5 %) intragastric erosions were observed. According to the postoperative time of follow-up, the diagnosis of intragastric migration was made in 74 (41.8 %), 14 (7.9 %), 38 (21.4 %), 40 (22.6 %), 6 (3.4 %), and 4 (2.2 %) banded patients at 6-12, 24, 36, 48, 60, and 72 months after banding, respectively. Most of intragastric band migration during the first 2 years occurred in bands with no or a few milliliters of filling. In patients with late erosion, the bands were adjusted several times; no band was overfilled but one was filled to the maximum or submaximum with a maximum of two adjustments. Erosions diagnosed during the first 24 months were related to the experience of the surgical staff, while late erosions were not. CONCLUSIONS: Intragastric band migration or band erosion is a rare, disturbing, and usually not life-threatening complication of gastric banding. Its pathogenesis is probably linked to different mechanisms in early (technical failure in retrogastric passage) or late (band management) presentation. It is usually asymptomatic and there is no pathognomonic presentation. A wide range of therapeutic options are available, from simple endoscopic or laparoscopic removal to early or late band replacement or other bariatric procedure. More experience and more studies are needed to lower its presentation rate and definitively clarify its pathogenesis to address the right therapeutic option
    • 

    corecore