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Featured Application: Convolutional neural networks can accurately identify the Inferior Alve-
olar Canal, rapidly generating precise 3D data. The datasets and source code used in this paper
are publicly available, allowing the reproducibility of the experiments performed.

Abstract: Introduction: The need of accurate three-dimensional data of anatomical structures is
increasing in the surgical field. The development of convolutional neural networks (CNNs) has been
helping to fill this gap by trying to provide efficient tools to clinicians. Nonetheless, the lack of a
fully accessible datasets and open-source algorithms is slowing the improvements in this field. In this
paper, we focus on the fully automatic segmentation of the Inferior Alveolar Canal (IAC), which is of
immense interest in the dental and maxillo-facial surgeries. Conventionally, only a bidimensional
annotation of the IAC is used in common clinical practice. A reliable convolutional neural network
(CNNs) might be timesaving in daily practice and improve the quality of assistance. Materials and
methods: Cone Beam Computed Tomography (CBCT) volumes obtained from a single radiological
center using the same machine were gathered and annotated. The course of the IAC was annotated
on the CBCT volumes. A secondary dataset with sparse annotations and a primary dataset with
both dense and sparse annotations were generated. Three separate experiments were conducted
in order to evaluate the CNN. The IoU and Dice scores of every experiment were recorded as the
primary endpoint, while the time needed to achieve the annotation was assessed as the secondary
end-point. Results: A total of 347 CBCT volumes were collected, then divided into primary and
secondary datasets. Among the three experiments, an IoU score of 0.64 and a Dice score of 0.79 were
obtained thanks to the pre-training of the CNN on the secondary dataset and the creation of a novel
deep label propagation model, followed by proper training on the primary dataset. To the best of our
knowledge, these results are the best ever published in the segmentation of the IAC. The datasets is
publicly available and algorithm is published as open-source software. On average, the CNN could
produce a 3D annotation of the IAC in 6.33 s, compared to 87.3 s needed by the radiology technician
to produce a bidimensional annotation. Conclusions: To resume, the following achievements have
been reached. A new state of the art in terms of Dice score was achieved, overcoming the threshold
commonly considered of 0.75 for the use in clinical practice. The CNN could fully automatically
produce accurate three-dimensional segmentation of the IAC in a rapid setting, compared to the
bidimensional annotations commonly used in the clinical practice and generated in a time-consuming
manner. We introduced our innovative deep label propagation method to optimize the performance
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of the CNN in the segmentation of the IAC. For the first time in this field, the datasets and the source
codes used were publicly released, granting reproducibility of the experiments and helping in the
improvement of IAC segmentation.

Keywords: inferior alveolar; mandibular; canal; deep learning; 3D; cone beam computed tomography
(CBCT); open-source

1. Introduction

The very recent development of new technologies, particularly in the field of artificial
intelligence, is leading to important innovations in the healthcare sector [1,2]. They range
from surgical outcomes prediction to anatomical studies, the correlation between clinical
and radiological findings, and even to genetic stratification and oncology [3–8]. Specifically,
the so-called “image-based analysis” is currently highly investigated as the role of the
human operator in the setting and reporting of radiological examinations could greatly
benefit from technological support [9–11].

The preservation of noble anatomical structures is critical in surgery, and, in particular,
in the head and neck district. Given the important number of surgical interventions
daily performed on the mandible, we decided to focus our work on the segmentation of
the inferior alveolar canal (IAC). To date, only a small number of studies regarding the
automatic segmentation of the inferior alveolar canal have been conducted. Limited results
in terms of accuracy have been achieved, with the exception of the recent paper published
by Lahoud et al. [12]. Moreover, the need to obtain accurate data in a quick and automatic
manner is a major concern in modern radiology.

Finally, the issue of free access to source codes and datasets in the deep learning field
has received considerable critical attention. Reproducibility of the experiments performed
cannot be assured if these data are kept private. Previous studies in the field of segmentation
of the IAC have not dealt with the open-source sharing of the dataset and algorithm used.

The specific objective of this study was to develop a CNN which is able to overcome
the results achieved so far and described in the literature, in order to quickly output
a reliable and three-dimensional segmentation of the IAC. This research also sought to
optimize the results obtained and to release them publicly together with the dataset and
source-codes used to achieve them.

2. Literature Review

The following section of this paper will briefly examine the clinical importance of the
IAC, and of its radiological investigation and the results obtained thus far in its segmenta-
tion with deep learning techniques.

2.1. The Inferior Alveolar Canal: Clinical Insights

In the field of mandibular surgery (trauma, dental, or reconstructive), the inferior alve-
olar bundle must be carefully identified and preserved as a noble structure [13]. Consisting
of the inferior alveolar nerve and the homonymous vessels (artery and vein), it runs in a
bony canal inside the mandible known as the “inferior alveolar canal” (IAC), or improperly
called mandibular canal [14] (Figure 1). This canal begins at the level of the lingual aspect
of the mandibular ramus (just above the Spix spine) and runs through the ramus, the angle
and the mandibular body up to the mental foramen (usually located between the first
and second premolar) [15,16]. Its identification during radiological examinations is a key
moment in surgical planning [13].
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Accurate preoperative identification of the inferior alveolar nerve (IAN) course is
crucial in various maxillofacial surgical procedures, such as dental anesthesia, extraction
of impacted third molars, placement of endosseous implants, mandibular osteotomies for
orthognathic purposes, and fracture plating of the mandibular ramus or angle [17–19].
Even though permanent damage to the inferior alveolar bundle is rare, these surgeries can
lead to temporary damage to the nerve function. Extraction of impacted teeth, in particular,
is the most frequent cause of temporary damage (40.8%), which occurs in up to 7% of
cases [20–22]. This is the relevant data, considering that dental extraction is one of the most
common surgical interventions.

Endosseous dental implant is one of the most frequent dental procedures. However,
the risk of neurosensory disorders following implant positioning in the mandible is quite
high, and has been estimated at around 13.50/100 person-years (confidence interval (CI):
10.98–16.03) [23]. The persistence of the neurosensory deficit can occur as a result of
incorrect positioning of the implant, and can be disabling for the patient [24]. An accurate
pre-operative assessment of the three-dimensional position of the IAC within the mandible
is recommended, thus allowing for proper planning of implant procedures.

Generally speaking, an injury of the IAN would result in a partial or total loss of lower
lip sensitivity and ipsilateral lower dental arch, or painful dysesthesia, together with a
proprioceptive alteration of the lower lip. Although not disabling in terms of mobility,
neurological damage would certainly cause discomfort to the patient and should, therefore,
be avoided if possible [25,26]. In addition, many patients who require elective surgery near
the IAN are young and healthy [20]. Hence, it is essential to set up a pre-operative plan as
accurately as possible to reduce post-operative complications.

2.2. Cone Beam Computed Tomography and Conventional Radiology

In maxillofacial and dental diagnostics, an important difference exists between two-
dimensional and three-dimensional imaging. Orthopantomogram (OPG) radiograph is
a two-dimensional radiological investigation, which may be adequate as a first level
examination in some clinical conditions, such as mandibular apical-radicular dental lesions.
As demonstrated by Vinayahalingam [27], deep learning techniques can also be applied
to OPG to identify the IAC with excellent results. However, a three-dimensional study
is required in case of more delicate circumstances, such as traumatology, extractions of
impacted teeth, or implant surgery [28]. In such cases, the computed tomography (CT)
is the main radiological examination. Both the conventional Multi-Detector CT (MDCT)
and the more recent Cone Beam CT (CBCT) can be used in dental and maxillofacial
surgical planning [29]. Compared to the first, CBCT guarantees an equal or superior image
quality in the face with a reduced radiation exposure [30,31]. It should be emphasized
that conventional CT is not the first choice for some diagnostic purposes in dentistry and
oral surgery, such as the evaluation of impacted teeth and periapical lesions [32] due to
the better spatial resolution, CBCT should be preferred in these situations. The lower
cost compared to medical CT, the wide availability in out-of-hospital healthcare facilities
and greater patient comfort during examination are other noticeable characteristics of
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CBCT [33]. Given these considerable advantages, the CBCT has therefore established itself
as an important diagnostic tool in the oral and maxillofacial region [34–37]. Furthermore,
CBCT application and usefulness in anatomical studies of mandibular structures have been
widely described [38–41].

2.3. CBCT Image Processing

After the acquisition, the CBCT needs some technical adjustments before exporting the
final images. First, the best axial slice (spline or panoramic base curve) for the annotations
of the canal has to be identified. A curve is drawn on the selected axial slice, and it is
usually placed at the equidistant point between the lingual and buccal cortices of the
mandible. Since the mesial component of the IAC is usually clinically more relevant due to
the presence of teeth, this curve is often shorter than the actual length of the IAC, which
instead reaches up to the mandibular ramus. Once the annotation is complete, a coronal
image similar to an OPG is generated. It is based on the axial slice selected and almost the
entire 2D course of the IAC can be annotated on it. From here, the 2D annotation performed
on this slice can be back projected to the original 3D volume, thus providing a 2D sparse
annotation of the IAC on the original CBCT scan. Unfortunately, all these annotation steps
are performed manually by a dedicated radiology technician, which is a waste of time and
resources. The possibility of a machine masking these adjustments with great accuracy is
therefore intriguing.

Moreover, 2D annotations fail to identify a considerable amount of inner information
about the IAC position and the bone structure, i.e., the accurate contour, position, and
diameters of the canal. An incomplete detection of the nerve positioning is often sufficient
to facilitate a positive surgical outcome, but it is not an accurate anatomical representation
of the IAC, and as such, it may lead to failure. On the other hand, manually producing a
3D annotation of the IAC would be practically unfeasible in the daily medical routine. In
fact, this experimental operation requires almost one hour for every patient, and therefore,
it is not applicable in the clinical practice. Automatic algorithms could certainly exceed
this limitation.

2.4. Automatic Segmentation of the Inferior Alveolar Canal

Recently, great strides have been made in the field of deep learning and, in particular,
the refinement of convolutional neural networks (CNN) has determined a strong boost in
medical applications.

CNNs are artificial neural networks functionally inspired by the visual cortex. In
fact, the animal brain system analyses stimuli in the visual field and interacts according
to a layered scheme of increasing complexity. Likewise, convolution filters, constituting
the CNNs, are responsible for learning features from the input image (s). A dot product
between the filter itself and the image pixel values forms the convolution layer. Such
a mathematical model has been successfully applied to both 2D and 3D segmentation,
alongside several more computer vision tasks [3,42–45]. A CNN designed for segmentation
purposes would be able to identify the three-dimensional IAC structure correctly without
the need for manual adjustments. Unfortunately, the capabilities of convolutional neural
networks are strongly limited by the lack of data carefully annotated, which instead are
mandatory to train deep learning models. Indeed, despite the significant amount of raw
data available in the field of dentistry/maxillofacial surgery, the CNN learning paradigm
requires dense 3D annotations to reach its full potential. As previously mentioned, such
data are extremely expensive to acquire.

In order to develop a CNN, a dataset to train the network is needed, together with a
dataset for its validation. The validation set allows the tuning of the training parameter for
the selected model on the specific use case. Finally, a testing dataset is required to evaluate
the performance of the model obtained on a real case scenario. (Figure 2).
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Figure 2. Example of the functioning and development of a convolutional neural network.

Although investigated by some authors, there are still few works regarding the use of
deep learning to identify the IAC. Classical computer vision algorithms for the automatic
segmentation of the IAC in CBCT scans have been recently outclassed by modern machine
learning and deep learning techniques [1,46–51]. In particular, the work from Jaskari
et al. is certainly worth of mention [51]. Their CNN’s algorithm was developed upon
2D annotations of the IAC. These annotations have been extended to 3D using a circle
expansion technique. This virtual reconstruction assumes that the IAC is regularly and
geometrically tubular. The results obtained were certainly interesting, but they were based
on an approximation of the real shape of the canal; consequently, the anatomical variants
cannot be considered in this model type. Data related to a novel CNN recently described
by Lahoud et al. established a new state of the art regarding the IAC segmentation [12].
Their results were developed on a 3D annotated dataset, but neither the dataset nor the
algorithm used is publicly accessible, making impossible to verify and reproduce them,
and making a proper comparison.

3. Materials and Methods

An experienced team of maxillofacial surgeons, engineers, radiologists, and radiology
technicians have joined forces to carry out this scientific work. The research was approved
by the local ethical committee, which also gave permission for the publication of the
datasets and the source code used (protocol number: 1374/2020/OSS/AOUMO). The
study was conducted according to the guidelines of the Declaration of Helsinki.

3.1. Dataset Generation and Annotation

All CBCTs were obtained using a NewTom/NTVGiMK4 machine (3 mA, 110 kV,
0.3 mm cubic voxels) (QR, Verona, Italy). The Affidea center in Modena (Italy) took
care of the acquisition and export of the images in DICOM format. The scanned images
were anonymized before being exported in DICOM format. Therefore, the only variables
accessible to the investigators were the sex and the age of the patients. All images were
captured between 2019 and 2020. All the samples are saved as 3D NumPy arrays with a
minimum shape of [148, 265, 312] and a maximum shape of [178, 423, 463]. Hounsfield
scale has been used to measure the radiodensity of CBCT volumes, and it ranges from
−1000 to 4191. The IAC occupies only a small fraction of the whole volume, which is on
average 0.1%.

Inclusion criteria were the following:

• Both male and female patients older than 12 years old;
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• Patients whose identification of the IAC on CBCT images was performed either by a
radiology technician or by a radiologist.

Exclusion criteria were the following:

• Unclear or unreadable CBCT images;
• Presence of gross anatomical mandible anomalies, including those related to previous

oncological or respective surgery.

The images were then annotated to identify the course of the IAC.
Sparse annotations routinely performed by the radiology technician in daily clinical

practice are present in all CBCTs. The steps of the sparse annotations performed were
the following:

1. Selection of the axial slice on which to base the subsequent extraction of the simil-OPG
coronal slice (Figure 3a);

2. Drawing of the curve describing the course (base curve) of the canal in the context of
the body of the mandible. This curve is a spline automatically identified using the
algorithm described in our previous paper and manually adjusted by adding/moving
control points when needed [52] (Figure 3b);

3. Generation of the coronal slice, similar to the OPG. This is the curved plane perpen-
dicular to the axial plane and containing the base curve (Figure 3c);

4. Bidimensional annotation of the IAC course on the coronal plane (Figure 3d).
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of the CBCT volumes.

Different from above, a team of three maxillofacial surgeons devoted themselves to
densely annotate CBCT volumes using our previously described tool [52]. Hence, a further
dataset of CBCT volumes with both sparse and dense 3D annotations was obtained. The
steps to realize it were as follows:

1. Selection of the axial slice, on which to base the subsequent extraction of the simil-OPG
coronal slice (Figure 3a);

2. Generation of the coronal slice, similar to the OPG. This is the curved plane perpen-
dicular to the axial plane and containing the base curve (Figure 3c);

3. Bidimensional annotation of the IAC course on the coronal plane (Figure 3d);
4. Automatic generation of Cross-Sectional Lines (CSLs), i.e., lines perpendicular to the

base curve and always lying on the axial plane (Figure 3e);
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5. Generation and annotation of the Cross-Sectional Views (CSVs), obtained on the
basis of the CLSs already described (Figure 3f). These views are planes containing
the CSLs and perpendicular to the direction of the canal, which is derived from the
bidimensional annotation previously obtained (Figure 3e);

6. Generation of 3D volumes (Figure 3g).

The reader has probably noticed that steps from 1 to 4 of the two aforementioned
annotation procedures overlap; nonetheless, the accurate annotations of CSVs in the latter
make the difference to achieve a densely annotated dataset. Each step was double-checked
by all members of the medical team. If the canal was not unequivocally visible in the CVSs,
it was not marked in order to avoid erroneous annotations that could mislead the CNN.

To resume, the whole CBCT dataset obtained with the approach described has been
divided in two main groups:

• A secondary dataset: it presents only sparse annotations, thus only showing the
descriptive curve of the IAC course on the axial slice and the 2D canal identification
on a coronal slice, similar to the OPG;

• A primary dataset: it has both sparse and dense annotations. The latter are all the 3D
annotations of the canal, including those performed on the CSVs.

3.2. Model Description and Primary End-Point Measurement

The neural network employed for the experiments was built from scratch, following
the description provided in the paper from Jaskari et al. [51]. This 3D segmentation method
is based on the U-Net 3D fully convolutional neural network [42]. As classical CNNs, U-Net
3D contains a contraction and an expansion path. The former, also called the encoder, is
used to capture the context in the image. The latter, the decoder, is a symmetric expanding
path whose goal is to enable precise localization using transposed convolutions. In the
encoder path, we employed three down sampling achieved by means of two convolution
set, ReLU, and batch normalization, followed by a maxpooling layer. On the other hand,
the decoder path is composed by three up sampling phases, each one composed by a
convolution, ReLU, and batch normalization, followed by a transposed convolution. Skip
connecting are employed among latent space with the same spatial resolution as in the
standard UNet. All the layers are detailed in Appendix A. In this specific context, the
decoder produces a probability map assigning to each voxel of the input volume a score
between 0 and 1. This output score has been later assessed by the threshold to distinguish
voxels inside and outside the volume.

The PyTorch-based [34] implementation of this model can be found on https://ditto.
ing.unimore.it/maxillo/ (accessed on 28 February 2023).

The primary endpoint has been the measurement of the accuracy of the annotations
created by the CNN, compared to the ground-truth volume generated by the medical team.
Sørensen-Dice similarity (Dice) score and Intersection over union (IoU) measurements have
been performed for every test. These allow us to calculate the similarity and the amount of
overlapping between two objects. They both range between 0 and 1; the closer the value is
to 1, the greatest is the accuracy of the model.

IoU is the Intersection over Union, and in this study, serves to measure the quality
of model prediction. More specifically, we name P and G the set of foreground voxels
in the predicted segmentation and ground-truth volume, respectively. The IoU is then
calculated as:

IoU =
# (P ∩ G)

# (P ∪ G)

where # is the cardinality of the set. If the prediction is equal to the ground-truth, the score
is 1. If the predicted voxels have no overlap with the ground-truth, the score is 0.

https://ditto.ing.unimore.it/maxillo/
https://ditto.ing.unimore.it/maxillo/
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The Dice score, also known as Sørensen–Dice index, is given by the following formula:

Dice =
2 ∗ # (P ∩ G)

# P + # G

In order to ensure comparison with other papers, both Intersection over Union and
Sørensen–Dice similarity (Dice score) are presented in the experimental Results section,
even though their values are very strictly correlated. Their values have been calculated on
the test set.

Three experiments with specific aims have been conducted. They are schematized in
Figure 4 and listed below:

1. In the first experiment, the CNN was trained twice on the primary dataset. First,
only using the sparse annotations extended with the circular expansion technique
(experiment 1A). Second, the CNN was trained on the same number of volumes, but
this time using dense annotations (experiment 1B). The results in terms of IoU and
Dice score were then compared.

2. In the second experiment, the results of the CNN obtained with two different tech-
niques were compared (experiment 2). In one case, the CNN was trained using only
the secondary dataset with circular expansion. In the second case, the CNN was
trained with a dataset composed of the whole secondary dataset and of the sparse
annotations on the primary dataset, both undergoing a circular expansion.

3. In the third experiment, two attempts were made. In the first case, the CNN was
trained on a cumulative dataset which included both the primary (with only dense
annotations) and secondary datasets (experiment 3A). In the second case, however, a
pre-training of CNN was performed using the secondary dataset, and subsequently,
the pre-trained CNN was actually trained on the primary dataset with 3D dense
annotations only (experiment 3B).
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For what concerns the pre-training, we have performed a total of 28 epochs, while the
training phase counts a total of 100 epochs. In both cases, we have used Stochastic Gradient
Descent (SGD) as an optimizer with an initial learning rate of 0.1 that would be halved if
no improvements on the evaluation loss are detected for 7 successive epochs, a batch size
of 6 and a patch shape of 80 × 80 × 80 pixels.



Appl. Sci. 2023, 13, 3271 9 of 18

As for the circular expansion technique, it can be briefly described in the following
passages:

• For each point in the sparse annotation, the direction of the canal is first determined
using the coordinates of the next point.

• A 1.6 voxel-long radius is computed to be orthogonal to the direction of the canal in
that point, and a circle is drawn.

• The radius length is set to ensure a circle diameter of 3 mm in real-world measurements.
This unit can differ due to the diverse voxel spacing specified in the patient DICOM
files (0.3 mm for each dimension, in our data).

• The previous step produces a hollow pipe-shaped 3D structure, that is finally filled
with traditional computer vision algorithms.

A more detailed description of this technique can be found in the paper by Jaskari
et al. [51].

3.3. Secondary End Point

A secondary endpoint has been established measuring the effective time needed by
the radiology technician to annotate every CBCT during his normal work routine. Recently,
this time has been compared with the time needed by the CNN to perform its annotations.
The time has been measured in seconds and a simple t-test has been conducted (CI 95%, p
value < 0.05).

4. Results
4.1. Demographic Data Collected

As already explained above, the volumes exported have been completely anonymized.
The only demographic data collected were the patients’ age and sex. The total number of
enrolled patients was 347, including 205 female patients and 142 male patients. The mean
age of the patients was 50 years, with a median of 52 years, and a standard deviation of
19.78. The most represented age groups were those aged between 60 and 70 years, and
those between 20 and 30 years. The youngest patient was 13 years old, while the oldest
patient was 96 years old.

4.2. Radiographic Data and Subdivision of the Datasets

In order to train, validate, and test the CNN, the overall dataset was split into a
primary and a secondary dataset. A total of 256 CBCT volumes composed the secondary
dataset, containing only the sparse annotations already described.

A sample of 91 CBCTs (randomly selected) were densely annotated by the medical
team, forming the primary dataset. This primary dataset was then divided in three sub-
sections:

• A primary dataset for the training, made of 68 CBCTs;
• A primary dataset for the validation, made of 8 CBCTs;
• A primary dataset for the testing, made of 15 CBCTs.

The overall dataset, obtained from the sum of the primary and secondary datasets, is
made of 347 CBCT volumes.

A graphic representation of the subdivision can be seen in Figure 5.
All datasets are available online, upon registration on the site, at https://ditto.ing.

unimore.it/maxillo/ (accessed on 28 February 2023).

https://ditto.ing.unimore.it/maxillo/
https://ditto.ing.unimore.it/maxillo/
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4.3. Results of the Experiments
4.3.1. Primary Endpoints

In the first experiment, the CNN was trained in two distinct ways. In the former
case, it was trained on a dataset of 68 CBCTs with sparse annotations, subject to circular
expansion. In the latter case, however, the CNN was trained using the same number of
CBCTs, but this time using dense annotations. The IoU values obtained in the respective
experiments were 0.39 and 0.56, while the Dice score values were 0.52 and 0.67, respectively.

In the second experiment, the CNN was trained with two different techniques. In
the former scenario, the CNN was trained using only the secondary dataset with circular
expansion, obtaining an IoU score of 0.42 and a Dice score of 0.60. In the latter scenario,
the CNN was trained with a dataset composed of the whole secondary dataset and of the
sparse annotations on the primary dataset, both undergoing a circular expansion, obtaining
IoU and Dice score values of 0.45 and 0.62, respectively.

In the third and final experiment, we tried to implement the CNN in two other ways.
In the former case, it was trained on all of the primary and secondary datasets, obtaining
an IoU and Dice score of 0.45 and 0.62, respectively. In the latter case, it was decided to
perform a pre-training on the secondary dataset and the pre-trained CNN was then actually
trained on the primary dataset. The IoU obtained was 0.54, together with a Dice score of
0.69. Both values are higher than those obtained in the first experiment. In particular, we
obtained a 3% improvement in the Dice score and a 4% improvement in the IoU score.

4.3.2. Optimization of the Algorithm

After the experiment 3B, we tried to further optimize the results obtained. In order to
do that, we developed a novel label propagation technique. The deep expansion model is
based on the same network used for segmentation, the main difference regards the input
layer, which has been changed in order to accept a concatenation of both the raw volume
data and the sparse annotations, rendered as a binary channel. This way, the network
is allowed to exploit the information about the sparse 2D annotations to produce a 3D
dense canal map, which is expected to be better than just using the raw volume as input.
By applying this technique to the secondary dataset, we are able to generate a 3D dense
annotation for all the patients that previously had only a sparse annotation, thus having a
more informative dataset that can be used as a pretraining for the final task (i.e., segmenting
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the IAC by using as input only the raw volume). Moreover, a positional embedding patch
was introduced in the algorithm. Since our sub-volumes have been extracted from the
original scan following a fixed grid, we exploited positional information derived from the
location of the top-left and bottom-right corners of the sub-volume. Exploiting positional
information ensures two extremely important benefits:

1. During training, the CNN is fed with implicit information about areas close to the
edges of the scan where the IAN is very unlikely to be present.

2. Information about cut positions helps the network to better shape the output: sub-
volumes located close to the mental foramen generally present a much thinner canal
than those located in the mandibular foramen.

These two adjustments granted more efficacy in the pre-training step and determined
a further improvement of the results. The IoU score obtained was 0.64, while the Dice score
reached 0.79.

To summarize, the training of our network was divided in two phases: Deep Label
Propagation, and IAC segmentation. They both used a modified version of UNet3D, where
the only difference was the number of input channels. During the Deep Label Propagation,
our model took the original 3D volume and the sparse annotation as input, and it was
trained to output a 3D segmentation. This process allowed to generate a dense segmentation
for all the volumes in our dataset that only have a sparse segmentation. We refer to this
data as synthetic (or generated) data. By using exclusively this data (i.e., 3D annotations
obtained from 2D ones), we trained the same model to accept only the plain CBCT volume
(with no IAC-related information) as input and to output the dense segmentation. As a
final step we fine-tuned this latter model with the ground-truth 3D labels.

During both phases, we used a patch-based training. For example, sub-patches were
extracted from the whole input, fed into the network, and aggregated back together. During
the Deep Label Propagation, patches have a size of 120 × 120 × 120 and a batch size of 2.
On the other hand, during the segmentation task, a patch size of 80 × 80 × 80 and batch
size of 6 are employed. In both phases a learning rate of 0.1 with SGD as optimizer have
been used for 100 epochs. The learning rate was decreased if no improvements in the
evaluation were obtained.

The results of the three experiments are summarized in Table 1.

Table 1. Summary of the results of all experiments. The closer to 1 is the value of the IoU or of the
Dice score, the greatest is the accuracy of the model.

Experiment Iou Score Dice Score

Experiment 1A:
Training on part of the secondary dataset, implemented with a circle expansion technique 0.39 0.56

Experiment 1B:
Training on primary dataset, densely annotated 0.52 0.67

Experiment 2:
Training on all of the secondary dataset, implemented with a circle expansion technique, or on a
composed dataset of the primary and secondary dataset, only with sparse annotations,
implemented with a circle expansion technique

0.45 0.62

Experiment 3A:
Training on a merged dataset composed of all of the primary dataset, with dense annotations,
and all of the secondary dataset, implemented with a circle expansion technique

0.45 0.62

Experiment 3B:
Pre-training on all of the secondary dataset, implemented with a circle expansion technique,
followed by a proper training on primary dataset, densely annotated

0.54 0.69

Optimization of the results of the experiment 3B
Pre-training on all of the secondary dataset, implemented with the deep label propagation
method, followed by a proper training on primary dataset, densely annotated

0.64 0.79
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4.3.3. Secondary Endpoint

The secondary endpoint was based on the measurements of the timing necessary for
the development of the annotated volumes. On average, the time spent by the radiology
technician in daily clinical practice to annotate the volumes was 87.3 s to obtain a bidimen-
sional annotation of the mandibular canal. On an NVIDIA Quadro RTX 5000, the inference
process takes, on average, 6.33 s to produce a 3D dense annotation of the IAC.

5. Discussion

The inferior alveolar canal has always been a key topic in oral and maxillofacial
surgery and several anatomical studies attempted to describe its course [16] accurately.
The available literature analyses both the vertical and the horizontal canal path since
the three-dimensional relationship with the surrounding structures is crucial in clinical
practice [53–55]. Most of these topographic anatomical studies were performed on cadaver
models [41]. However, improved imaging modalities have recently promoted radiological
research. The growing diffusion of CBCT in common clinical practice explains the choice of
this method for the present work. The experimental model we have applied might appear
complex, but the data have been exploited in a different informative way. In fact, each test
performed is independent and pursues specific objectives. We have proceeded to discuss
the results one by one as reported below.

As shown in Figure 4, the first experiment was composed of two different parts.
In the first experiment, the CNN was trained in two distinct ways. In the former case, it

was trained on a dataset of 68 CBCTs with sparse annotations subject to circular expansion.
In the latter case, dense annotations based on the same number of CBCT volumes were
used for CNN training.

The IoU values obtained were 0.39 (sparse mode) and 0.56 (dense mode), while the
Dice score values were 0.52 (sparse mode) and 0.67 (dense mode). Thus, an improvement
of the scores of 44% and 29% were found, respectively.

The substantial amelioration (IoU 0.39 vs. 0.52, and Dice Score 0.56 vs. 0.67) has to be
related to the methodology applied. In fact, while in the experiment, 1A, a bidimensional
annotation of the circularly expanded canal, was carried out; in the experiment 1B, a 3D
voxel-based annotation system was used. The method with dense annotations ensures the
elimination of IAC shape approximation biases, which instead characterizes experiments
based on circular expansion. This is anatomically correct because the mandibular canal
does not maintain a constant tubular shape and diameter, but it is rather subject to inter-
and intra-individual variations along its path [16,54,56]. Exactly the same number of CBCT
volumes were used in experiments 1A and 1B, and this must also be emphasized; the only
differences relied on the type of annotations used. To conclude, the first experiment proves
that dense-annotation based dataset is more accurate than the one based on the circular
expansion technique only.

In the second experiment, the training of the CNN was performed on two circularly
expanded datasets. These differed only in the number of CBCT volumes: in the former
case, only the secondary dataset was used (256 CBCT volumes), while in the latter test,
the secondary dataset was combined with the primary training dataset provided with
sparse annotations only (total of 324 CBCT volumes). Despite a substantial rise in the
CNN training volumes used in the second scenario (26.6% enhancement), the results were
actually pretty similar. In the first case, the IoU and Dice scores were 0.42 and 0.60, while
values of 0.45 and 0.62 were obtained by combining the datasets, respectively. Although
they represent a good starting point for researchers, the data produced using the circular
expansion technique appear to be limited and unsatisfactory according to these results.

The third and last experiment was divided in two different parts. In the former stage,
the primary and secondary datasets were used together to train CNN resulting in an IoU
score of 0.45 and a Dice score of 0.62. These results were not very satisfactory considering
that these values are lower than those obtained in the first experiment. Moreover, in the
experiment 1B, the overall dataset was smaller because only the primary dataset was used.
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We hypothesize a performance decrease due to the heterogeneity of the CNN training
annotations used in experiment 3A. In fact, the CNN was trained at the same time on a
dataset implemented by the circular expansion technique and on a dataset with voxel-
based annotations.

Therefore, we sought to maximize the primary and secondary datasets in experiment
3B to overcome this limit. In particular, using the secondary dataset with sparse annotations
and the circular expansion method, we effectively pre-trained the CNN. The use of pre-
training has been shown to perform a role in improving CNNs performance [57]. Indeed,
the pre-trained CNN was then properly trained with the primary dataset. The IoU score
obtained was 0.54 and the Dice score was 0.69. Regarding both parameters, these were
certainly the best overall results obtained.

The main difference between the experiments 1B and 3B consisted of the pre-training
performed on the secondary dataset, which could have performed a key-role in providing
the CNN a raw understanding of the IAC anatomy. This uptake was then refined with
the primary dataset. Therefore, these results demonstrated the usefulness of the circular
expansion technique mainly in the pre-training phase of developing a CNN.

The aim of this paper was to create a reliable CNN to three-dimensionally identify
the mandibular canal and provide a public voxel-level annotations dataset of the Inferior
Alveolar Canal. However, some considerations about the numerical results obtained are
mandatory.

Comparing our results to the previously published ones, two main papers are to be
considered [12,51]. When the results of this paper were collected, the previous best results
were obtained by Jaskari et al. based on 637 CBCT volumes sparsely annotated. Using a
circular expansion technique, they obtained a Dice score value of 0.58. It has to be noted
that the data produced in this experiment are bidimensional. In the experiment 3B, we
were able to overcome this amazing result, achieving a Dice score of 0.69 and an IoU score
of 0.54. As explained, this was achieved by pre-training the CNN on a sparse annotated
dataset and applying a circular expansion technique; subsequently, a voxel-level annotated
dataset of the IAC was employed. Thus, our findings are superior both in terms of accuracy
and amount of data compared to Jaskari’s, since the IAC is annotated on a 3D-base.

In a similar way, Lahoud et al. used 3D annotations of the IAC, obtaining a Dice score
of 0.77 and an IoU score of 0.64 [12]. Similarly to our technique, Lahoud et al. also centered
the annotation protocol on a three-dimensional basis. Nonetheless, this result was acquired
using a much wider densely annotated dataset (235 CBCT volumes with 3D annotations)
compared with the present study (91 CBCT volumes densely annotated).

Interestingly, in both cases (the present paper and Lahoud’s one), the number of
volumes needed to overcome Jaskari’s results was significantly lower: Jaskari needed
637 CBCT volumes compared to Lahoud’s 235 and our 91 CBCT volumes [12,51]. These
findings prove that the voxel-based annotation technique is much more informative and
efficient than the circular expansion one.

Finally, we committed ourselves to overcome the result presented by Lahoud et al.,
who recorded a Dice score of 0.77 and an IoU score of 0.64 [12]. So, a new expansion
technique of the sparsely-annotated dataset was added. In fact, we were able to transform
the 2D-annotations of the IAC into 3D-voxel level information and we also introduced the
positional concept in our algorithm (as explained in the subsection “4.3.2. Optimization
of the algorithm”). We called this novel method “deep label propagation method” and
further technical insights were described in a previous paper [58]. A Dice score of 0.79
and IoU score of 0.64 were recorded. While this achievement has an enormous room for
improvement, it has to be said that the Dice score threshold of 0.75 is commonly considered
an acceptable score for the use in clinical practice [12]. To the best of our knowledge, our
result of 0.79 in terms of Dice score was the best ever recorded, setting a new state of
the art in the field of the segmentation of the IAC. Once again, it is also interesting to
notice that the number of CBCT volumes we used (91 volumes) was much lower than
Lahoud’s one (235 volumes). Together with the better results achieved, this demonstrates
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the successfulness of the optimized algorithm, which could make the dataset much more
informative even with a lower number of CBCTs.

It Is also interesting to observe the improvement of the results in the secondary
end-point, i.e., the time required for the development of the annotated volumes. Cost-
effectiveness in medicine, and especially in radiology, is becoming a critical topic. In recent
years, there has been an increasing interest in extending the amount of radiologic data
produced, while reducing the quantity of hours dedicated to their extraction. Therefore,
we focused on time as a secondary end-point, in order to measure the effectiveness of
our algorithm also in terms of processing speed. As previously stated, there has been a
critical reduction in the amount of time required to segmentate the IAC: the CNN is able to
accurately annotate it in less than 7.5% of the time needed by the radiology technician (6.33 s
vs. 87.3 s). In addition, only the data produced by the present CNN are voxel-based, while
the data composed by the radiology technician in the clinical practice are bidimensional.

So, the main advantages reached in these investigations are two: waste of time reduc-
tion and improvement in the quality of the information obtained. In fact, a few clicks are
enough to obtain a reliable annotation of the mandibular canal using our CNN. During
the daily work, it takes more than a minute for the radiology technicians to identify that
structure. The time saved can allow the operator to devote his/her time to other tasks
while the software performs the annotations independently. Moreover, the annotations
conventionally obtained are bidimensional. On the contrary, a properly trained CNN can
provide tridimensional identification of the mandibular canal, thus allowing for example a
better pre-operative planning of a surgical intervention. The integration of our CNN in a
multidisciplinary clinical practice can enable better cost-effectiveness. The beneficiaries
will be many:

• The surgeon has access to a three-dimensional annotation of the IAC, thus being able
to better visualize the data and better plan the surgical procedures (i.e., positioning of
a dental implant or approaching to an impacted tooth).

• The radiologist can examine the CBCT volume and describe the IAC course more
detailly.

• The standard of care would be improved, providing the patient a safer and more
predictable morphological diagnosis.

• The waste of time for the radiology technician is minimized, while maximizing the
amount of information provided to the clinicians.

• The radiology center would increase the cost-effectiveness of the CBCT exam.

A final consideration is to be made regarding the possibility to access the full anonymized
dataset, which can be consulted at the following address: at https://ditto.ing.unimore.it/
maxillo/ (accessed on 28 February 2023). Along with it, the source code was also made
accessible to all. To the best of our knowledge, this is the first time in the medical scientific
literature. Yet, we firmly believe in a common effort towards science development, and we
hope this choice will encourage more researchers to do the same.

The main limitation of this paper is the low number of densely annotated CBCT
volumes. This aspect will soon be improved by enhancing the number of voxel-based
annotations of the mandibular canal in new CBCT volumes. Another possible improvement
action concerns the study of anatomical variants due to the variability of the IAC shape,
bifurcated or trifurcated forms are occasionally encounterable [59]. Furthermore, IAC
characteristics differ according to age, sex, and especially oncologic pediatric mandibular
surgery can be very delicate [16,60,61].

Other issues to be addressed are the identification of the canal in poor-resolution
CBCTs and in cases of pathologies involving the IAC. Introducing these variables into the
algorithm could further improve the CNN, together with an expansion of the available
datasets. It is our intention to work further in this direction.

https://ditto.ing.unimore.it/maxillo/
https://ditto.ing.unimore.it/maxillo/
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6. Conclusions

This paper aimed at developing a CNN capable of automatically and accurately
identifying the IAC, starting from an analysis based on CBCT data. To achieve this goal, a
new densely annotated 3D dataset has been collected for the first time. The annotations were
performed in terms of voxels, thus guaranteeing 3D data and not virtual reconstructions of
the IAC.

This preliminary study allowed to improve significantly the manual work of the
radiologist/radiology technician. Therefore, the facilitation obtained can be the first step
towards the subsequent implementation of the software, with the aim of obtaining a
substantial integration between the contribution of the neural network and the human
labor. In fact, in the context of modern surgery, obtaining 3D data regarding the anatomy of
specific noble structures (e.g., the IAC) is increasingly fundamental. This work sets a new
full stop in the segmentation of the inferior alveolar canal on CBCT volumes, recording
on of the highest Dice scores currently existing. To summarize, we have demonstrated the
following experimental results:

• EXP1A-B: a dataset with dense annotations is more accurate than a dataset which uses
a circular expansion technique only;

• EXP2: the circle expansion technique can have limited results;
• EXP3A-B: a sparsely annotated dataset implemented with circle expansion technique

can be helpful to pre-train a CNN. The algorithm was further improved thanks to
our innovative deep label propagation method applied to the secondary dataset, to
enhance the pre-training of the CNN. This crucial step allowed to achieve the best-ever
Dice score recorded in the segmentation of the IAC. The results were also obtained with
a considerably lower number of CBCT volumes compared to previously published
papers in this field.

In addition, for the first time it was provided the free access to the volumes and source
code used, so as to be able to work more and more towards the implementation of deep
learning in surgical programming. They can be found upon registration at https://ditto.
ing.unimore.it/maxillo/ (accessed on 28 February 2023). To the best of our knowledge,
this is the first public maxillofacial dataset with voxel-level annotations of the Inferior
Alveolar Canal.
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Appendix A

Table A1. Internal structure of the network.

Layer Input Channels Output Channels Skip Connections

3D Conv. Block 0 1 32 No
3D Conv. Block 1 + MaxPool 32 64 Yes

3D Conv. Block 2 64 64 No
3D Conv. Block 3 + MaxPool 64 128 Yes

3D Conv. Block 4 128 128 No
3D Conv. Block 5 + MaxPool 128 256 Yes

3D Conv. Block 6 256 256 No
3D Conv. Block 7 + MaxPool 256 512 No

Transpose Conv. 0 513 512 No
3D Conv. Block 8 512 + 256 256 Yes
3D Conv. Block 9 256 256 No

Transpose Conv. 1 256 256 No
3D Conv. Block 10 256 + 128 128 Yes
3D Conv. Block 11 128 128 No
Transpose Conv. 2 128 128 No
3D Conv. Block 12 128 + 64 64 Yes
3D Conv. Block 13 64 64 No
3D Conv. Block 14 64 1 No
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