62 research outputs found

    Varenicline decreases nicotine but not alcohol self-administration in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats

    Get PDF
    Background: Alcohol and nicotine are largely co-abused. Here, we investigated whether concurrent exposure to both addictive drugs influences each other's consumption and whether varenicline attenuates alcohol consumption in the presence of nicotine. Methods: Marchigian Sardinian alcohol-preferring (msP) rats trained to simultaneously self-administer oral alcohol (10% v/v) and intravenous nicotine (30. ÎĽg/kg/inf) were used. Additional groups of rats were trained to self-administer either alcohol or nicotine. Further, msP rats were also trained to self-administer nicotine followed by 22-h/day access to alcohol and water in a two bottle free choice paradigm or water alone. The effects of varenicline (0.0, 0.3, 1.0, 3.0. mg/kg, p.o.) on alcohol and nicotine consumption were tested. Results: In a self-administration paradigm, msP rats showed a significantly high level of alcohol and nicotine intake when the drugs were administered alone. However, when access to both drugs occurred concomitantly, the number of nicotine infusions self-administered was significantly decreased. Nicotine self-administration was markedly reduced by varenicline regardless of whether it was self-administered alone or concurrently with alcohol. In a two bottle choice test, varenicline significantly decreased nicotine self-administration but had no influence on alcohol consumption. Conclusion: Varenicline is highly efficacious in decreasing nicotine self-administration either alone or in combination with alcohol. However, varenicline failed to influence both operant responding for alcohol and home-cage alcohol drinking in msP animals. Taken together, our findings suggest that the effects of varenicline could be specific to nicotine under conditions where excessive alcohol drinking is facilitated by genetic factors as in msP rats

    PPL-138 (BU10038):A bifunctional NOP/mu partial agonist that reduces cocaine self-administration in rats

    Get PDF
    The search for new and effective treatments for cocaine use disorder (CUD) is a priority. We determined whether PPL-138 (BU10038), a compound with partial agonist activity at both nociceptin opioid peptide (NOP) and mu-opioid receptors, reduces cocaine consumption, reinstatement, and whether the compound itself produces reinforcing effects in rats. Using an intermittent access (IntA) cocaine self-administration procedure, we found that PPL-138 (0.1 and 0.3 mg/kg) effectively decreased the total number of cocaine infusions and burst-like cocaine intake in both male and female rats. Responses for food in an IntA model of food self-administration were not altered for either sex, although locomotor activity was increased in female but not male rats. Blockade of NOP receptors with the selective antagonist J-113397 (5 mg/kg) did not prevent the PPL-138-induced suppression of cocaine self-administration, whereas blockade of mu-opioid receptors by naltrexone (1 mg/kg) reversed such effect. Consistently, treatment with morphine (1, 3, and 10 mg/kg) dose-dependently reduced IntA cocaine self-administration measures. PPL-138 also reduced reinstatement of cocaine seeking at all doses examined. Although an initial treatment with PPL-138 (2.5, 10, and 40 ÎĽg/kg/infusion) appeared rewarding, the compound did not maintain self-administration behavior. Animals treated with PPL-138 showed initial suppression of cocaine self-administration, which was eliminated following repeated daily dosing. However, suppression of cocaine self-administration was retained when subsequent PPL-138 treatments were administered 48 h apart. These findings demonstrate that the approach of combining partial NOP/mu-opioid activation successfully reduces cocaine use, but properties of PPL-138 seem to depend on the timing of drug administration.</p

    Role of Hypothalamic-Pituitary-Adrenal axis and corticotropin-releasing factor stress system on cue-induced relapse to alcohol seeking

    Get PDF
    A large body of evidence has shown that the Corticotropin Releasing Factor (CRF) system, which plays a key role in stress modulation, is deeply involved in relapse to alcohol seeking induced by exposure to stressful events such as foot shock or yohimbine injections. Exposure to environmental cues is also known to be a trigger for alcohol relapse, nevertheless, the relationship between the relapse evoked by the cue-induced model and the CRF stress systems remains unclear. The purpose of this study was to evaluate, in male Wistar rats, the involvement of the CRF system and Hypothalamic-Pituitary-Adrenal (HPA) axis in relapse induced by environmental cues. Antalarmin, a selective CRF1 receptor antagonist, Metyrapone, a corticosterone (CORT) synthesis inhibitor and CORT were evaluated for their effects on the reinstatement test in a cue-induced relapse model. Antalarmin (20mg/kg) blocked relapse to alcohol seeking induced by environmental cues. Metyrapone (50 and 100mg/kg) also blocked relapse in Wistar rats but only at the highest dose (100mg/kg). Corticosterone had no effect on relapse at the doses tested. The results obtained from this study suggest that the CRF stress system and the HPA axis are involved in cue-induced alcohol relapse

    Pregabalin reduces cocaine self-administration and relapse to cocaine seeking in the rat

    Get PDF
    Pregabalin (Lyrica™) is a structural analog of g-aminobutyric acid (GABA) and is approved by the FDA for partial epilepsy, neuropathic pain and generalized anxiety disorders. Pregabalin also reduces excitatory neurotransmitter release and post-synaptic excitability. Recently, we demonstrated that pregabalin reduced alcohol intake and prevented relapse to the alcohol seeking elicited by stress or environmental stimuli associated with alcohol availability. Here, we sought to extend these findings by examining the effect of pregabalin on cocaine self-administration (0.25 mg/infusion) and on cocaine seeking elicited by both conditioned stimuli and stress, as generated by administration of yohimbine (1.25 mg/kg). The results showed that oral administration of pregabalin (0, 10 or 30 mg/kg) reduced self-administration of cocaine over an extended period (6 hours), whereas it did not modify self-administration of food. In cocaine reinstatement studies, pregabalin (10 and 30 mg/kg) abolished the cocaine seeking elicited by both the pharmacological stressor yohimbine and the cues predictive of cocaine availability. Overall, these results demonstrate that pregabalin may have potential in the treatment of some aspects of cocaine addiction

    Protection against alcohol-induced neuronal and cognitive damage by the PPARÎł receptor agonist pioglitazone

    No full text
    Binge alcohol drinking has emerged as a typical phenomenon in young people. This pattern of drinking, repeatedly leading to extremely high blood and brain alcohol levels and intoxication is associated with severe risks of neurodegeneration and cognitive damage. Mechanisms involved in excitotoxicity and neuroinflammation are pivotal elements in alcohol-induced neurotoxicity. Evidence has demonstrated that PPARÎł receptor activation shows anti-inflammatory and neuroprotective properties. Here we examine whether treatment with the PPARÎł agonist pioglitazone is beneficial in counteracting neurodegeneration, neuroinflammation and cognitive damage produced by binge alcohol intoxication. Adult Wistar rats were subjected to a 4-day binge intoxication procedure, which is commonly used to model excessive alcohol consumption in humans. Across the 4-day period, pioglitazone (0, 30, 60mg/kg) was administered orally twice daily at 12-h intervals. Degenerative cells were detected by fluoro-jade B (FJ-B) immunostaining in brain regions where expression of pro-inflammatory cytokines was also determined. The effects of pioglitazone on cognitive function were assessed in an operant reversal learning task and the Morris water maze task. Binge alcohol exposure produced selective neuronal degeneration in the hippocampal dentate gyrus and the adjacent entorhinal cortex. Pioglitazone reduced FJ-B positive cells in both regions and prevented alcohol-induced expression of pro-inflammatory cytokines. Pioglitazone also rescued alcohol-impaired reversal learning in the operant task and spatial learning deficits in the Morris water maze. These findings demonstrate that activation of PPARÎł protects against neuronal and cognitive degeneration elicited by binge alcohol exposure. The protective effect of PPARÎł agonist appears to be linked to inhibition of pro-inflammatory cytokines

    Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats

    No full text
    Introduction: Marchigian Sardinian alcohol-preferring (msP) rats exhibit innate preference for alcohol along with anxious phenotype. In these animals, two single-nucleotide polymorphisms in position -1,836 and -2,097 from the first start codon of the CRF1-R transcript have been found. Materials and Methods: Here, we examined whether these point mutations account for the heightened anxiety-like behavior and stress responsiveness of msP rats. We rederived the msP rats to obtain two distinct lines carrying the wild-type (GG) and point mutations (AA), respectively. Results: CRF1-R gene expression analysis revealed significant dysregulation of the system in the extended amygdala of AA rats. At the behavioral level, using the elevated plus maze, we found that both AA and GG lines had higher basal anxiety compared to Wistar rats. In the defensive burying test, AA rats showed decreased burying behavior compared to the GG and the unselected Wistar lines. Freezing/immobility did not differ among AA and GG but was higher than that of Wistars. The selective CRF1-R antagonist antalarmin (0, 10, and 20 mg/kg) reduced burying behavior in Wistar animals. However, antalarmin (10 mg/kg) tended to increase rather than reducing this behavior when tested in the msP lines, an effect that appeared more marked in the GG as compared to the AA line. Conclusion: The present data suggest that rats with msP genetic background are more anxious and show different sensitivity to stress and CRF1-R blockade than Wistars. The point mutations occurring in the CRF1-R gene do not seem to influence basal anxiety while they appear to affect active responses to stress

    Role of the satiety factor oleoylethanolamide in alcoholism

    Get PDF
    Oleoylethanolamide (OEA) is a satiety factor that controls motivational responses to dietary fat. Here we show that alcohol administration causes the release of OEA in rodents, which in turn reduces alcohol consumption by engaging peroxisome proliferator-activated receptor-alpha (PPAR-α). This effect appears to rely on peripheral signaling mechanisms as alcohol self-administration is unaltered by intracerebral PPAR-α agonist administration, and the lesion of sensory afferent fibers (by capsaicin) abrogates the effect of systemically administered OEA on alcohol intake. Additionally, OEA is shown to block cue-induced reinstatement of alcohol-seeking behavior (an animal model of relapse) and reduce the severity of somatic withdrawal symptoms in alcohol-dependent animals. Collectively, these findings demonstrate a homeostatic role for OEA signaling in the behavioral effects of alcohol exposure and highlight OEA as a novel therapeutic target for alcohol use disorders and alcoholism

    GAS6/TAM signaling pathway controls MICA expression in multiple myeloma cells

    Get PDF
    NKG2D ligands play a relevant role in Natural Killer (NK) cell -mediated immune surveillance of multiple myeloma (MM). Different levels of regulation control the expression of these molecules at cell surface. A number of oncogenic proteins and miRNAs act as negative regulators of NKG2D ligand transcription and translation, but the molecular mechanisms sustaining their basal expression in MM cells remain poorly understood. Here, we evaluated the role of the growth arrest specific 6 (GAS6)/TAM signaling pathway in the regulation of NKG2D ligand expression and MM recognition by NK cells. Our data showed that GAS6 as well as MERTK and AXL depletion in MM cells results in MICA downregulation and inhibition of NKG2D-mediated NK cell degranulation. Noteworthy, GAS6 derived from bone marrow stromal cells (BMSCs) also increases MICA expression at both protein and mRNA level in human MM cell lines and in primary malignant plasma cells. NF-kB activation is required for these regulatory mechanisms since deletion of a site responsive for this transcription factor compromises the induction of mica promoter by BMSCs. Accordingly, knockdown of GAS6 reduces the capability of BMSCs to activate NF-kB pathway as well as to enhance MICA expression in MM cells. Taken together, these results shed light on molecular mechanism underlying NKG2D ligand regulation and identify GAS6 protein as a novel autocrine and paracrine regulator of basal expression of MICA in human MM cells

    Endocannabinoid Regulation of Acute and Protracted Nicotine Withdrawal: Effect of FAAH Inhibition

    Get PDF
    Evidence shows that the endocannabinoid system modulates the addictive properties of nicotine. In the present study, we hypothesized that spontaneous withdrawal resulting from removal of chronically implanted transdermal nicotine patches is regulated by the endocannabinoid system. A 7-day nicotine dependence procedure (5.2 mg/rat/day) elicited occurrence of reliable nicotine abstinence symptoms in Wistar rats. Somatic and affective withdrawal signs were observed at 16 and 34 hours following removal of nicotine patches, respectively. Further behavioral manifestations including decrease in locomotor activity and increased weight gain also occurred during withdrawal. Expression of spontaneous nicotine withdrawal was accompanied by fluctuation in levels of the endocannabinoid anandamide (AEA) in several brain structures including the amygdala, the hippocampus, the hypothalamus and the prefrontal cortex. Conversely, levels of 2-arachidonoyl-sn-glycerol were not significantly altered. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the intracellular degradation of AEA, by URB597 (0.1 and 0.3 mg/kg, i.p.), reduced withdrawal-induced anxiety as assessed by the elevated plus maze test and the shock-probe defensive burying paradigm, but did not prevent the occurrence of somatic signs. Together, the results indicate that pharmacological strategies aimed at enhancing endocannabinoid signaling may offer therapeutic advantages to treat the negative affective state produced by nicotine withdrawal, which is critical for the maintenance of tobacco use
    • …
    corecore