6 research outputs found

    A perceptual approach for stereoscopic rendering optimization

    Get PDF
    Cataloged from PDF version of article.The traditional way of stereoscopic rendering requires rendering the scene for left and right eyes separately: which doubles the rendering complexity. In this study, we propose a perceptually-based approach for accelerating stereoscopic rendering. This optimization approach is based on the Binocular Suppression Theory, which claims that the overall percept of a stereo pair in a region is determined by the dominant image on the corresponding region. We investigate how binocular suppression mechanism of human visual system can be utilized for rendering optimization. Our aim is to identify the graphics rendering and modeling features that do not affect the overall quality of a stereo pair when simplified in one view. By combining the results of this investigation with the principles of visual attention, we infer that this optimization approach is feasible if the high quality view has more intensity contrast. For this reason, we performed a subjective experiment, in which various representative graphical methods were analyzed. The experimental results verified our hypothesis that a modification, applied on a single view, is not perceptible if it decreases the intensity contrast, and thus can be used for stereoscopic rendering. (C) 2009 Elsevier Ltd. All rights reserved

    A framework for applying the principles of depth perception to information visualization

    Get PDF
    Cataloged from PDF version of article.During the visualization of 3D content, using the depth cues selectively to support the design goals and enabling a user to perceive the spatial relationships between the objects are important concerns. In this novel solution, we automate this process by proposing a framework that determines important depth cues for the input scene and the rendering methods to provide these cues. While determining the importance of the cues, we consider the user's tasks and the scene's spatial layout. The importance of each depth cue is calculated using a fuzzy logic-based decision system. Then, suitable rendering methods that provide the important cues are selected by performing a cost-profit analysis on the rendering costs of the methods and their contribution to depth perception. Possible cue conflicts are considered and handled in the system. We also provide formal experimental studies designed for several visualization tasks. A statistical analysis of the experiments verifies the success of our framework

    A face tracking algorithm for user interaction in mobile devices

    Get PDF
    A new face tracking algorithm, and a human-computer interaction technique based on this algorithm, are proposed for use on mobile devices. The face tracking algorithm considers the limitations of mobile use case - constrained computational resources and varying environmental conditions. The solution is based on color comparisons and works on images gathered from the front camera of a device. The face tracking system generates 2D face position as an output that can be used for controlling different applications. Two of such applications are also presented in this work; the first example uses face position to determine the viewpoint, and the second example enables an intuitive way of browsing large images. © 2009 IEEE

    A framework for enhancing depth perception in computer graphics

    Get PDF
    This paper introduces a solution for enhancing depth perception in a given 3D computer-generated scene. For this purpose, we propose a framework that decides on the suitable depth cues for a given scene and the rendering methods which provide these cues. First, the system calculates the importance of each depth cue using a fuzzy logic based algorithm which considers the target tasks in the application and the spatial layout of the scene. Then, a knapsack model is constructed to keep the balance between the rendering costs of the graphical methods that provide these cues and their contibution to depth perception. This cost-profit analysis step selects the proper rendering methods. In this work, we also present several objective and subjective experiments which show that our automated depth enhancement system is statistically (p < 0.05) better than the other method selection techniques that are tested. © 2010 ACM

    A color-based face tracking algorithm for enhancing interaction with mobile devices

    Get PDF
    A color-based face tracking algorithm is proposed to be used as a human-computer interaction tool on mobile devices. The solution provides a natural means of interaction enabling a motion parallax effect in applications. The algorithm considers the characteristics of mobile useconstrained computational resources and varying environmental conditions. The solution is based on color comparisons and works on images gathered from the front camera of a device. In addition to color comparisons, the coherency of the facial pixels is considered in the algorithm. Several applications are also demonstrated in this work, which use the face position to determine the viewpoint in a virtual scene, or for browsing large images. The accuracy of the system is tested under different environmental conditions such as lighting and background, and the performance of the system is measured in different types of mobile devices. According to these measurements the system allows for accurate (7% RMS error) face tracking in real time (20-100 fps). © Springer-Verlag 2010
    corecore