
A Face Tracking Algorithm for User Interaction in
Mobile Devices

Abdullah Bulbul
Dep. of Computer Engineering

Bilkent University
Ankara, Turkey

bulbul@cs.bilkent.edu.tr

Zeynep Cipiloglu
Dep. of Computer Engineering

Bilkent University
Ankara, Turkey

zeynep@cs.bilkent.edu.tr

Tolga Capin
Dep. of Computer Engineering

Bilkent University
Ankara, Turkey

tcapin@cs.bilkent.edu.tr

Abstract—A new face tracking algorithm, and a human-computer
interaction technique based on this algorithm, are proposed for
use on mobile devices. The face tracking algorithm considers the
limitations of mobile use case – constrained computational
resources and varying environmental conditions. The solution is
based on color comparisons and works on images gathered from
the front camera of a device. The face tracking system generates
2D face position as an output that can be used for controlling
different applications. Two of such applications are also
presented in this work; the first example uses face position to
determine the viewpoint, and the second example enables an
intuitive way of browsing large images.

Keywords-face tracking; human computer interaction; mobile
devices

I. INTRODUCTION
Recent advances in computer and mobile technology have

made possible the investigation of new and efficient interaction
techniques. As a result, gesture recognition, motion and object
tracking, perceptual user interfaces are getting popular. As the
input modalities are limited on a mobile device, the available
resources should be used in an efficient and effective way.
Keypad, joystick, stylus, camera and sensors are some of the
input sources that are commonly used for interaction.

In this paper, we focus on the usage of camera input for
interaction with the device. We propose to use the built-in
camera to track the head position. Thus, our approach does not
require any extra special hardware. In this method, we track the
head movements by comparing the face positions through the
neighboring frames.

By using this method, different gestures can be defined for
different applications. Besides, face tracking enables enhancing
the depth effect in the applications by supplying motion
parallax. Motion parallax refers to the depth information
provided by the optic flow of the visual field due to the
sideways movement of the viewer [1].

In order to present the usage of this face tracking system,
we have implemented two sample applications. The first
application demonstrates the motion parallax effect where the
face tracking system controls the camera position in a 3D
application. The second application is a picture viewing tool in

which the scroll events are controlled by the head movements
in an intuitive way.

The Problem: Since the interaction method will run on a
mobile device, and share the computational resources with the
actual application, the solution should be real-time and should
not consume much computational resources. Another
challenging point of the mobility is highly varying camera
input data, such as color, contrast, luminance, and the
background and ambient properties.

II. RELATED WORK
In the literature, face detection, face tracking and other

computer vision techniques have been heavily used for Human
Computer Interaction. There are various interaction approaches
based on egomotion, whose concern is the self movement of
the device. Barnard et al. propose a vision based user interface
for mobile devices where the camera input is used for
egomotion calculation [2]. In this method, Hidden Markov
Models are used to model the motion feature sequences. Then,
the results are filtered by a likelihood ratio and the entropy of
the sequence. Capin et al. suggest another camera based
interaction solution in which incoming video is used to
estimate the phone motion and then the physical motion of the
phone is mapped to scroll or view direction according to the
application. In this method, a feature based tracking algorithm
is performed to analyze the motion of corner-like features
between the consequent frames [3], [4]. Another feature based
approach for controlling user interfaces on mobile devices is
developed by Hannuksela et al. where motion analysis is
performed using a sparse set of features and a Kalman filter is
applied to smooth motion trajectories [5].

Finger tracking is another problem that has been addressed
for user interaction on mobile devices. Hannuksela et al.
combine Kalman filter and the Expectation Maximization
(EM) algorithm for estimating the background and finger
motions so as to deal with the changeable background
conditions [6].

Face tracking is an important vision based tool to be used in
human computer interaction. In these solutions, motion of the
face is translated into a set of commands to interact with the
computer. In order to track the face position, first step is to

2009 International Conference on CyberWorlds

978-0-7695-3791-7/09 $26.00 © 2009 IEEE

DOI 10.1109/CW.2009.9

385

2009 International Conference on CyberWorlds

978-0-7695-3791-7/09 $26.00 © 2009 IEEE

DOI 10.1109/CW.2009.9

385

detect the face in an image. Face detection algorithms are
generally categorized as feature based and image based
methods [7]. In feature based methods, facial features such as
nose, eyes and lips are identified by performing geometrical
analysis on their locations, proportions and sizes [8]. Color,
motion and edges are the mostly used properties to extract the
facial features. The second type, which contains image-based
methods, is based on scanning the image through a window to
find the face candidates. The methods in this category
generally use template matching, support vector machines
(SVM) or neural networks [9], [10]. Image based methods are
popular in Computer Vision due to their robustness.

One example of feature based approaches for face tracking
is developed by Bradski, where face tracking is used to control
computer games and 3D navigation [8]. Flying over a 3D city
model controlled by face movements is one example of these
applications. The method extends a color based tracking
method, called mean shift algorithm, which operates on color
probability distributions. Hunke et al. proposes an image based
neural networks algorithm that performs face tracking for
human computer interaction [9]. Blink and Click project is
another application, where traditional mouse is replaced by
human facial actions [10]. For instance, nose location is used as
the mouse pointer and left/right eye blinks correspond to
left/right mouse clicks, in this system. This algorithm is a
combination of feature based and image based approaches.

Several other researchers have proposed vision based
solutions for HCI. We refer the reader to [11] for a further
survey of these techniques.

All face tracking methods that have been referred are
designed to operate on desktop or high-end mobile systems. In
addition, these computer vision algorithms generally perform
multiple passes over the image and require complex machine
learning processes. Hence, they are computationally heavy to
be applied on smart phone mobile devices, and there is a need
for less expensive and lightweight solutions for use in
combination with mobile applications.

III. OUR APPROACH
As a human computer interaction solution, we are

proposing a head tracking system which uses the input from the
front camera to track the head position. In this system, we can
make the assumptions that there is always a user in front of the
display and there is only one user most of the time, most likely
scenario for mobile devices. We target a lightweight face
tracking algorithm that is suitable to use in mobile devices
which has limitations in terms of CPU power.

Our camera based face tracking system can be used as an
interaction technique for many applications in mobile devices.
For instance, it is very suitable to be used for scrolling the
scene or it can be used to render the scene according to the
user’s position. Two sample applications of the face tracking
system are shown in the Applications section.

Figure 1: Overview of the System

An overview of our head tracking system is summarized in
Figure 1. In this system, image is captured from the front
camera of the device, a suitable region of the image is selected
(clipping phase) according to the previous face position and the
face is detected in the selected region of the image. According
to the position of the head, an action specific to the application
is performed, such as scrolling the picture to the right when the
head moves to the left in a picture viewer application. We
describe the details of the solution below.

A. Considerations and Limitations
First, we list our assumptions for our tracking method

below:

• There is a single face on the image most of the time.

• The face covers most of the image space when it is
fully in view. According to our observations on a
horizontal slice of the image, the proportion of the
image that belongs to face to the whole image is
slightly above 1/2, and the face covers at least one third
of the whole image.

• In a mobile environment, light is a highly varying
factor, whereas the hue value of the face remains stable
throughout the frames.

• Hue values belonging to skin colors of different people
fall in a particular range.

• The RGB values will not fluctuate too much while
going on a line on the face.

• Background changes frame to frame on a mobile
environment, particularly while the user on the move.

• Background may be smoother than the face as well as
the opposite.

The limitations of mobile devices are also important for our
algorithm design. Most importantly, mobile devices have lower
CPU powers relative to computers, and resolution of the
captured images from the front camera is not assumed high.
Our aim is keeping the face detected in real-time while
background properties change. On the other hand, existing
computer vision techniques require many passes on the image
and have inferior results in mobile case.

Upon these design considerations, our algorithm is based
on the following ideas:

386386

• Scan not the whole image but a limited part of it. For
example, only a horizontal and a vertical line that
includes face.

• The line to scan may be determined according to
previous position of the face.

• An adjustable solution is preferred that keeps
performance and accuracy balanced.

• Complex vision techniques are not appropriate in our
case.

• On start assume that the face is close to the center of
the image.

B. Algorithm
We have developed an algorithm that only uses color

comparisons, rather than geometric properties of the facial
features in order to avoid high computations. When selecting
color space to use in the algorithm we generally avoid using
the RGB space since light changes significantly affect the R, G,
B values. Therefore, we mostly prefer using the HSL color
space as the hue value is the stable parameter against the
varying environmental conditions.

The dark boxes in Figure 1 show the steps of our algorithm.
In the clipping phase, a suitable region of the captured image is
selected. Then the clipped image is given as an input to the face
detection phase. The details of these phases are explained in the
following subsections.

1) Clipping
Since scanning through the whole image is costly, we have

designed an algorithm in which all calculations are performed
upon a suitable region of the image. We found this suitable
region using the face position on the previous frame. While
determining the region that will be scanned:

• A horizontal scan detects the x position of the face and
a vertical scan detects the y position.

• Which horizontal line or lines to use in calculations is
determined by the y position of the face in the previous
frame, and vice versa.

• Number of lines to scan can be increased for more
accurate results. This allows a trade-off between
accuracy and performance.

2) Face Detection
After determining the horizontal and vertical lines to be

scanned in the clipping phase, for each line to scan, the
following steps are applied:

a) Adjusting the Average Light
In a mobile environment the light is highly varying: The

device can be used under sunlight, indoor environments, in a
dark environment or in any different light conditions. Hence,
the light value on the image may be in a narrow interval, such
that in a dark environment all pixels on the image have low
light values. A wider distribution of the color values is more
preferable to work on. Thus, our algorithm starts with a light
adjustment step. The light values are gathered from the HSL

color space and after refinement of the L values new HSL
values are replaced with the old ones on the image (1).

௣ᇲܮ ൌ ቐ ௣ܮ ൈ ஺௜௠஺௩௚ᇲ , ௣ܮ ൏ 255݃ݒܣ െ ൫255 െ ௣൯ܮ ൈ ଶହହି஺௜௠ଶହହି஺௩௚ᇲ , ௣ܮ ൒ (1) ݃ݒܣ

Where ܮ௣ᇲ is the new light value of the pixel p, ܮ௣ is the old
value, Avg is the average light value of the image, Aim is the
target average light of the image and the light value is scaled
between 0-255. The purpose of this adjustment is setting the
average light of the image to a central value and widening the
light distribution. (Figure 2)

b) Eliminating flat regions
This step in our algorithm eliminates the regions whose

light values do not change for a long sequence of pixels
because of the curvature on a human face. Pixels corresponding
to a flat shape, for example a wall, have light values that are
nearly the same since each part of a flat surface gets the light in
a similar angle. On the other hand, human face is not flat and
has a curvature; thus, the light values on corresponding frames
are expected to differ slightly on a face. This part of the
algorithm sums up the differences in a sequence of pixels and
eliminates them if the change in light values is below a
threshold (2). ∑ |L୧ᇱ |୧ א ୬ሺ୧ሻ ൏ ֜ ݄ݐ (2) ݁ݐ݈ܽ݊݅݉݅݁

Where, ݊ሺ݅ሻ is the neighborhood of pixel ݅ and ݄ݐ is the
threshold value. We have empirically chosen a threshold of 25
for 30 consequent pixels (in 0-255 light value scale) (Figure 3).

c) Eliminating regions that have fluctuations
The next step of the algorithm is the elimination of the

fluctuating parts. On the image, there may be a few textured
parts that have a pattern of repeating colors or a non-regular
region that have very different colors. These parts cannot be on
a face since colors on a face generally changes towards a single
direction. There is not much fluctuation of the color values on a
face. Using R, G and B together is more suitable than using H,
S and L since R, G and B are of similar types regarding the
range and semantics; thus, we select using the RGB space in
this step. Determining the fluctuating parts is done by taking
the second order derivatives of the RGB values. Second order
derivatives for R, G and B components are separately
calculated and the magnitudes of the derivatives are summed
up. If the summation of the fluctuation is greater than a
threshold in a line of consequent pixels this part is eliminated
(3). ∑ |ܴ௜ᇱᇱ| ൅ |௜ᇱᇱܩ| ൅ ௡ሺ௜ሻ א ௜ᇱᇱ|௜ܤ| ൐ ֜ ݄ݐ (3) ݁ݐ݈ܽ݊݅݉݅݁

Where, ݊ሺ݅ሻ is the neighborhood of pixel ݅ and ݄ݐ is the
threshold value. In our case, the threshold is 750 for 30
consequent pixels (in a 0-255 RGB scale). This part of the
algorithm uses a similar approach to edge detection algorithms
and can be seen as elimination of the parts that have many
edges. (Figure 4)

387387

d) Finding skin color
There are a number of attempts to detect the skin color

most of which suggest very restrictive methods [12]. These
restrictions are not appropriate for mobile environment since
they cause most of the face to be eliminated in the varying
environmental conditions. Therefore, we use a less restrictive
method to detect the skin color.

Based on the observations in [13], blue component in a skin
color varies in a wide range, and hence, blue component is not
effective on the overall color as much as red component.
According to the analytical assessments of [13], red-green ratio
of the skin colors changes between 1:1 to 3:1. Based on these
assessments, we eliminate the regions with color that cannot be
a skin color. (Figure 5)

e) Finding mostly used hue
One assumption is that face generally covers a large region

in the display in a mobile device. The proportion of the face to
the whole is generally above 1/2 and at least 1/3. Based on this
assumption, it can be thought that the mostly used hue value
belongs to the face. For this purpose, we divide the hue space
into equal sized clusters. In this way, for each cluster, we find
the total number of pixels that fall into that range. The cluster
with the maximum number gives the mostly used hue and we
assume that this is the hue value of the face. Therefore, we can
eliminate other regions in the image. Cluster size of 40
generally gives the best results. (Figure 6)

f) Eliminating noisy output
After all the steps explained previously, there still exist

some regions that seem as face candidate but are very small to
be a face indeed. Therefore, we apply a median filter to remove
the noisy regions in the image as the last step. (Figure 7)

IV. APPLICATIONS
In our initial experiments, we have used SONY VAIO UX

device. In this part we present two applications that we
integrated our face tracker into, to show example usages of our
interaction technique.

Camera Application:

As a sample application that uses our face tracking
algorithm, a 3D application was implemented. In this
application, a 3D scene is rendered from different viewpoints
using an OpenGL perspective camera. The position of the
camera is determined by the input from our face tracking
system. In other words, the position of the user is used as
analogous to the position of the camera and the movement of
the camera is controlled by the movement of the head. By this
way, the user can view different portions of the scene by only
moving his head or his device and this enhances the depth
perception by providing motion parallax cue of depth. Hence,
our face tracking system provides an elegant solution for such
an application as well.

Figure 2: Left: Original, Right: Light Adjusted

Figure 3: Left: Original, Right: Flat regions are eliminated.

Figure 4: Left: Original, Right: Fluctuations are eliminated.

Figure 5: Left: Original, Right: Regions that are not skin color are eliminated.

Figure 6: Left: Original, Right: Effect of mostly used hue

Figure 7: Left: Without noise elimination, Right: After noise elimination

388388

Picture Viewer Application:

Displaying a large picture in a small display area has
always been a problem of mobile devices. Lack of mouse
makes the usage of scroll bars difficult. For this purpose, an
intuitive interaction solution is required. We propose to use our
face tracking system in order to handle the inputs for scrolling
events. Therefore, we have implemented a system to view large
pictures in a small display. The usage of this system is quite
intuitive because it can be thought as looking through a
window as a peephole metaphor. So for instance, when you
move your head to the right, you can see the area on the left
from the window, and vice versa. This usage is much easier in
mobile devices when compared to desktop systems, since there
is also an opportunity of moving the device as well as the head.

V. DISCUSSION
Generally the system works as expected in different

environments and under different lightings although there are
some situations in which the system works problematically. In
order to evaluate the success of the face tracker, we do not need
the system to find the exact face region; instead, tracking an
approximate position is sufficient for interaction.

The system works appropriately in different brightness
conditions, even in a relatively dark environment, user’s face
can be differentiated by the system to some extent. Figure 8
shows sample execution results under various light and
background conditions.

One advantage of the system is its adjustable usage. Since
all calculations are done line by line in a horizontal or vertical
fashion, it is possible to set how many lines to consider. All of
the image can be used in the calculations as well as only a
single vertical and a single horizontal line of the image. That
provides flexibility needed for mobile devices which have
different CPU powers and camera resolutions.

According to our observations the system cannot be used
appropriately in some conditions. Firstly, the flat wooden parts
such as many of the furniture cannot be differentiated from the
face easily, since they have similar hue values and they have
texture that is not flat or fluctuating enough to be eliminated.
Also, the system cannot work correctly when there is a white
background that is illuminated by yellow or pink light which
creates color properties similar to a face. In these cases, using
only color properties is not sufficient. A possible solution for
these cases can be extending the algorithm to consider the
geometrical features such as the proportions of nose, eyes and
lips etc., in addition to the color based calculations.

We believe that face tracking is an intuitive and effective
way of interaction. Also the adjustable behavior of the
proposed face tracking system can be a significant facility for
mobile devices which have different processors. In the
meantime, it is possible to obtain more accurate results by
improving the face detection part of the algorithm.

Figure 8: Results under different background conditions. First and third

columns are the original images. Second and forth columns are the output of
face detector: blue regions are the eliminated parts and the red point is the
calculated face position.

VI. CONCLUSION
We have proposed a new face tracking based interaction

method for mobile devices. The applied face tracking method
is a color comparison based algorithm and designed to be
appropriate for the limitations of the mobile devices and the
highly varying mobile environment. The usage of the face
tracking is presented with two example applications those
simplify viewing images and 3D contents on mobile devices.
The overall performance of the system is satisfactory although
there are some problematic cases. Handling those situations
also remains as a future work. Also, our face tracking
algorithm which works on 2D can be extended to 3D by
providing the information of how close the user to the device.
A possible solution may be calculating the proportion of face
pixels to the whole image in which an increase in this
proportion means that user gets closer to the device.

ACKNOWLEDGMENT
We thank FP7-213349 All 3D Imaging Phone project for

the hardware support.

REFERENCES
[1] P. Shirley. Fundamentals of Computer Graphics. A. K. Peters, Ltd.,

Natick, MA, USA, 2002.
[2] M. Barnard, J. Hannuksela, P. Sangi, and J. Heikkilä, “A Vision based

Motion Interface for Mobile Phones,” In: Proc. 5th International
Conference on Computer Vision Systems (ICVS), Bielefeld, Germany,
2007.

[3] T. Capin, A. Haro, V. Setlur, and S. Wilkinson, “Camera-Based Virtual
Environment Interaction on Mobile Devices,” Lecture Notes in
Computer Science, Vol. 4263/2006, October 2006, pp. 765-773,
Springer, 9783540472421, Berlin.

[4] A. Haro, K. Mori, T. Capin, and S. Wilkinson, “Mobile camera-based
user interaction,” Proc. ICCV-HCI 2005, pages 79–89, October 2005.

[5] J. Hannuksela, P. Sangi, and J. Heikkilä, “A Vision-Based Approach for
Controlling User Interfaces of Mobile Devices,” In: Proc. IEEE
Conference on Computer Vision and Pattern Recognition, Workshop on
Vision for Human-Computer Interaction (V4HCI), 6 p., San Diego, CA,
2005.

[6] J. Hannuksela, S. Huttunen, P. Sangi, and J. Heikkilä, “Motion-based
Finger Tracking for User Interaction with Mobile Phones,” In: Proc. 4th
European Conference on Visual Media Productio (CVMP), London,
UK, 2007.

[7] B.K.L. Erik Hjelmas, “Face Detection: A Survey, Computer Vision and
Image Understanding,” vol. 3, no. 3, pp. 236-274, Sept. 2001.

389389

[8] G. R. Bradski, “Computer vision face tracking for use in a perceptual
user interface,” Intel Technology Journal, 1998.

[9] M. Hunke and A. Waibel, “Face locating and tracking for human-
computer interaction”. In Proc. of the 28th Asilomar Conf. on Signals,
Systems and Computers, pages 1277-1281, 1994.

[10] W. Siriluck, S. Kamolphiwong, T. Kamolphiwong, and S. Sae-Whong,
“Blink and click,” In Proceedings of the 1st international Convention on
Rehabilitation Engineering & Assistive Technology: in Conjunction
with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting
(Singapore, April 23 - 26, 2007). i-CREATe '07. ACM, New York, NY,
43-46.

[11] A. Jaimes and N. Sebe, “Multimodal Human Computer Interaction: A
Survey,” Proc. 11th IEEE Int'l Workshop Human Computer Interaction
(HCI), 2005.

[12] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A survey on pixel-based
skin color detection techniques”, GRAPHICON03, pp. 85–92, 2003.

[13] J. Brand and J. Mason, “A Comparative Assessment of Three
Approaches to Pixel-Level Human Skin Detection,” Proc. IEEE Int"l
Conf. Pattern Recognition, vol. 1, pp. 1056-1059, Sept. 2000.

390390

