130 research outputs found

    Cycloidal-spiral sampling for three-modal x-ray CT flyscans with two-dimensional phase sensitivity

    Get PDF
    We present a flyscan compatible acquisition scheme for three-modal X-Ray Computed Tomography (CT) with two-dimensional phase sensitivity. Our approach is demonstrated using a "beam tracking" setup, through which a sample's attenuation, phase (refraction) and scattering properties can be measured from a single frame, providing three complementary contrast channels. Up to now, such setups required the sample to be stepped at each rotation angle to sample signals at an adequate rate, to prevent resolution losses, anisotropic resolution, and under-sampling artefacts. However, the need for stepping necessitated a step-and-shoot implementation, which is affected by motors' overheads and increases the total scan time. By contrast, our proposed scheme, by which continuous horizontal and vertical translations of the sample are integrated with its rotation (leading to a "cycloidal-spiral" trajectory), is fully compatible with continuous scanning (flyscans). This leads to greatly reduced scan times while largely preserving image quality and isotropic resolution

    Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches

    Get PDF
    We gratefully acknowledge the support of the UK EPSRC (grant no. EP/J018171/1), the EU FP7 programmes: the Extreme Light Infrastructure (ELI) project, the Laserlab-Europe (no. 284464), and the EUCARD-2 project (no. 312453).The laser-plasma wakefield accelerator is a compact source of high brightness, ultra-short duration electron bunches. Self-injection occurs when electrons from the background plasma gain sufficient momentum at the back of the bubble-shaped accelerating structure to experience sustained acceleration. The shortest duration and highest brightness electron bunches result from self-injection close to the threshold for injection. Here we show that in this case injection is due to the localized charge density build-up in the sheath crossing region at the rear of the bubble, which has the effect of increasing the accelerating potential to above a critical value. Bunch duration is determined by the dwell time above this critical value, which explains why single or multiple ultra-short electron bunches with little dark current are formed in the first bubble. We confirm experimentally, using coherent optical transition radiation measurements, that single or multiple bunches with femtosecond duration and peak currents of several kiloAmpere, and femtosecond intervals between bunches, emerge from the accelerator.Publisher PDFPeer reviewe

    Pepper-pot emittance measurement of laser-plasma wakefield accelerated electrons

    Get PDF
    The transverse emittance is an important parameter governing the brightness of an electron beam. Here we present the first pepper-pot measurement of the transverse emittance for a mono-energetic electron beam from a laser-plasma wakefield accelerator, carried out on the Advanced Laser-Plasma High Energy Accelerators towards X-Rays (ALPHA-X) beam line. Mono-energetic electrons are passed through an array of 52 mu m diameter holes in a tungsten mask. The pepper-pot results set an upper limit for the normalised emittance at 5.5 +/- 1 pi mm mrad for an 82 MeV beam

    Bright betatron x-ray radiation from a laser-driven-clustering gas target

    Get PDF
    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications

    Imaging defects in vanadium(iii) oxide nanocrystals using Bragg coherent diffractive imaging

    Get PDF
    Defects in strongly correlated materials such as V2O3 play influential roles on their electrical properties. Understanding the defects' structure is of paramount importance. In this project, we investigate defect structures in V2O3 grown via a flux method. We use AFM to see surface features in several large flake-like particles that exhibit characteristics of spiral growth. We also use Bragg coherent diffractive imaging (BCDI) to probe in 3 dimensions a smaller particle without flake-like morphology and note an absence of the pure screw dislocation characteristic of spiral growth. We identified and measured several defects by comparing the observed local displacement of the crystal, measured via BCDI to well-known models of the displacement around defects in the crystal. We identified two Image ID:d1ce00736j-t1.gif partial dislocations in the crystal. We discuss how defects of different types influence the morphology of V2O3 crystals grown via a flux method

    Inclusion of coherence in Monte Carlo models for simulation of x-ray phase contrast imaging

    Get PDF
    Interest in phase contrast imaging methods based on electromagnetic wave coherence has increased significantly recently, particularly at X-ray energies. This is giving rise to a demand for effective simulation methods. Coherent imaging approaches are usually based on wave optics, which require significant computational resources, particularly for producing 2D images. Monte Carlo (MC) methods, used to track individual particles/photons for particle physics, are not considered appropriate for describing coherence effects. Previous preliminary work has evaluated the possibility of incorporating coherence in Monte Carlo codes. However, in this paper, we present the implementation of refraction in a model that is based on time of flight calculations and the Huygens-Fresnel principle, which allow reproducing the formation of phase contrast images in partially and fully coherent experimental conditions. The model is implemented in the FLUKA Monte Carlo code and X-ray phase contrast imaging simulations are compared with experiments and wave optics calculations

    Phase-contrast imaging using radiation sources based on laser-plasma wakefield accelerators : state of the art and future development

    Get PDF
    Both the laser-plasma wakefield accelerator (LWFA) and X-ray phase-contrast imaging (XPCi) are promising technologies that are attracting the attention of the scientific community. Conventional X-ray absorption imaging cannot be used as a means of imaging biological material because of low contrast. XPCi overcomes this limitation by exploiting the variation of the refraction index of materials. The contrast obtained is higher than for conventional absorption imaging and requires a lower dose. The LWFA is a new concept of acceleration where electrons are accelerated to very high energy (~150 MeV) in very short distances (mm scale) by surfing plasma waves excited by the passage of an ultra-intense laser pulse (~1018 Wcm-2) through plasma. Electrons in the LWFA can undergo transverse oscillation and emit synchrotron-like (betatron) radiation in a narrow cone around the propagation axis. The properties of the betatron radiation produced by LWFA, such as source size and spectrum, make it an excellent candidate for XPCi. In this work we present the characterization of betatron radiation produced by the LWFA in the ALPHA-X laboratory (University of Strathclyde). We show how phase contrast images can be obtained using the betatron radiation in a free-space propagation configuration and we discuss the potential and limitation of the LWFA driven XPCi

    Laser-wakefield accelerators for medical phase contrast imaging : Monte Carlo simulations and experimental studies

    Get PDF
    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental result

    An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Get PDF
    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs
    corecore