60 research outputs found

    High-speed X-ray ptychographic tomography

    Get PDF
    X-ray ptychography is a coherent scanning imaging technique widely used at synchrotron facilities for producing quantitative phase images beyond the resolution limit of conventional x-ray optics. The scanning nature of the technique introduces an inherent overhead to the collection at every scan position and limits the acquisition time of each 2D projection. The overhead associated with motion can be minimised with a continuous-scanning approach. Here we present an acquisition architecture based on continuous-scanning and up-triggering which allows to record ptychographic datasets at up to 9 kHz. We demonstrate the method by applying it to record 2D scans at up to 273 ”m2/s and 3D scans of a (20 ”m)3 volume in less than three hours. We discuss the current limitations and the outlook toward the development of sub-second 2D acquisition and minutes-long 3D ptychographic tomograms

    Implementation of a hyperspectral X-ray camera control and processing software chain

    Get PDF
    Hyperspectral X-ray detectors, which provide the full energy spectrum detected by each individual pixel, have become available for use in lab-based facilities. The addition of spectral information currently comes at the cost of low overall acceptable flux rates, and can introduce countrate nonlinearity at higher energies. Neither of these drawbacks are desirable for transmission imaging and tomography. In this paper a new data processing software chain is presented for the SLcam, a pnCCD-based hyperspectral camera prototype, allowing for more control over the conversion from raw frames to hyperspectral images. Complementary to the processing software, a set of live data visualisations was developed to aid in monitoring ongoing experiments and to allow for preliminary data processing on-the-fly. The combination of these software elements forms the first step towards general applicability of hyperspectral imaging at laboratory tomography setups

    Hard X‐ray Nanotomography for 3D Analysis of Coking in Nickel‐based Catalysts

    Get PDF
    Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2_{2}O3_{3} catalysts for CO2_{2} methanation and CH4_{4} dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 Όm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles

    Spectroscopic imaging with single acquisition ptychography and a hyperspectral detector

    Get PDF
    We present a new method of single acquisition spectroscopic imaging with high spatial resolution. The technique is based on the combination of polychromatic synchrotron radiation and ptychographic imaging with a recently developed energy discriminating detector. We demonstrate the feasibility with a Ni-Cu test sample recorded at I13-1 of the Diamond Light Source, UK. The two elements can be clearly distinguished and the Ni absorption edge is identified. The results prove the feasibility of obtaining high-resolution structural and chemical images within a single acquisition using a polychromatic X-ray beam. The capability of resolving the absorption edge applies to a wide range of research areas, such as magnetic domains imaging and element specific investigations in biological, materials, and earth sciences. The method utilises the full available radiation spectrum and is therefore well suited for broadband radiation sources

    Hard X-Ray Nanotomography for 3D Analysis of Coking in Nickel-Based Catalysts

    Get PDF
    Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2O3 catalysts for CO2 methanation and CH4 dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 ÎŒm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles

    Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera

    Get PDF
    Multilayer monochromator devices are commonly used at (imaging) beamlines of synchrotron facilities to shape the X-ray beam to relatively small bandwidth and high intensity. However, stripe artefacts are often observed and can deteriorate the image quality. Although the intensity distribution of these artefacts has been described in the literature, their spectral distribution is currently unknown. To assess the spatio-spectral properties of the monochromated X-ray beam, the direct beam has been measured for the first time using a hyperspectral X-ray detector. The results show a large number of spectral features with different spatial distributions for a [Ru, B4C] strip monochromator, associated primarily with the higher-order harmonics of the undulator and monochromator. It is found that their relative contributions are sufficiently low to avoid an influence on the imaging data. The [V, B4C] strip suppresses these high-order harmonics even more than the former, yet at the cost of reduced efficiency

    Challenges of dosimetry of ultra-short pulsed very high energy electron beams

    Get PDF
    Very high energy electrons (VHEE) in the range from 100–250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetric properties compared with 6-20 MV photons generated by clinical linear accelerators (LINACs). VHEE beams have characteristics unlike any other beams currently used for radiotherapy: femtosecond to picosecond duration electron bunches, which leads to very high dose per pulse, and energies that exceed that currently used in clinical applications. Dosimetry with conventional online detectors, such as ionization chambers or diodes, is a challenge due to non-negligible ion recombination effects taking place in the sensitive volumes of these detectors. FLUKA and Geant4 Monet Carlo (MC) codes have been employed to study the temporal and spectral evolution of ultrashort VHEE beams in a water phantom. These results are complemented by ion recombination measurements employing an IBA CC04 ionization chamber for a 165 MeV VHEE beam. For comparison, ion recombination has also been measured using the same chamber with a conventional 20 MeV electron beam. This work demonstrates that the IBA CC04 ionization chamber exhibits significant ion recombination and is therefore not suitable for dosimetry of ultrashort pulsed VHEE beams applying conventional correction factors. Further study is required to investigate the applicability of ion chambers in VHEE dosimetry

    Harte Röntgen‐Nanotomographie zur 3D‐Analyse der Verkokung in Nickel‐basierten Katalysatoren

    Get PDF
    Das VerstĂ€ndnis der Katalysatordesaktivierung durch Verkokung ist entscheidend fĂŒr ein wissensbasiertes Katalysator- und Prozessdesign bei Reaktionen mit Kohlenstoffverbindungen. Die Katalysatorverkokung wird dabei typischerweise durch Post-Mortem-Analyse untersucht. In der vorliegenden Arbeit wird ptychographische Röntgentomographie (PXCT) zur Analyse von kĂŒnstlich verkokten Ni/Al2O3-Katalysatoren fĂŒr die CO2-Methansierung und CH4-Trockenreformierung verwendet. PXCT liefert dabei 3D-Informationen der lokalen Elektronendichte mit ca. 80 nm Auflösung und ermöglicht somit die Visualisierung und Untersuchung der AusprĂ€gung der Verkokung in Katalysatorpartikeln mit einem Durchmesser von ca. 40 Όm. Die Verkokung wurde hauptsĂ€chlich im nanoporösen Festkörper identifiziert und konnte nicht in den aufgelösten Makroporen gefunden werden. Die Kohlenstoffbildung wurde unabhĂ€ngig dazu mittels operando Raman-Spektroskopie bestĂ€tigt. PXCT wird als aufkommende Charakterisierungstechnik hervorgehoben, die eine nanoskalige Identifizierung, Lokalisierung und möglicherweise Quantifizierung von verschiedenen DesaktivierungsphĂ€nomenen mit 3D-Auflösung in kompletten Katalysatorpartikeln ermöglicht

    Fabrication of High-Aspect Ratio Nanogratings for Phase-based X-ray Imaging

    Get PDF
    Diffractive optical elements such as periodic gratings are fundamental devices in X-ray imaging - a technique that medical, material science and security scans rely upon. Fabrication of such structures with high aspect ratios at the nanoscale creates opportunities to further advance such applications, especially in terms of relaxing X-ray source coherence requirements. This is because typical grating-based X-ray phase imaging techniques (e.g., Talbot self-imaging) require a coherence length of at least one grating period and ideally longer. In this paper, the fabrication challenges in achieving high aspect-ratio nanogratings filled with gold are addressed by a combination of laser interference and nanoimprint lithography, physical vapor deposition, metal assisted chemical etching (MACE), and electroplating. This relatively simple and cost-efficient approach is unlocked by an innovative post-MACE drying step with hexamethyldisilazane, which effectively minimizes the stiction of the nanostructures. The theoretical limits of the approach are discussed and, experimentally, X-ray nanogratings with aspect ratios >40 demonstrated. Finally, their excellent diffractive abilities are shown when exposed to a hard (12.2 keV) monochromatic x-ray beam at a synchrotron facility, and thus potential applicability in phase-based X-ray imaging.Comment: 27 pages, 5 figures in main text, plus supporting informatio
    • 

    corecore