11,246 research outputs found

    The Tip of the Red Giant Branch and Distance of the Magellanic Clouds: results from the DENIS survey

    Get PDF
    We present a precise determination of the apparent magnitude of the tip of the red giant branch (TRGB) in the I (0.8 micron), J (1.25 micron), and K_S (2.15 micron) bands from the luminosity function of a sample of data extracted from the DENIS catalogue towards the Magellanic Clouds (Cioni et al. 2000). From the J and Ks magnitudes we derive bolometric magnitudes m_bol. We present a new algorithm for the determination of the TRGB magnitude, which we describe in detail and test extensively using Monte-Carlo simulations. We note that any method that searches for a peak in the first derivative (used by most authors) or the second derivative (used by us) of the observed luminosity function does not yield an unbiased estimate for the actual magnitude of the TRGB discontinuity. We stress the importance of correcting for this bias, which is not generally done. We combine the results of our algorithm with theoretical predictions to derive the distance modulus of the Magellanic Clouds. We obtain m-M = 18.55 (0.04 formal, 0.08 systematic) for the Large Magellanic Cloud (LMC), and m-M = 18.99 (0.03 formal, 0.08 systematic) for the Small Magellanic Cloud (SMC). These are among the most accurate determinations of these quantities currently available, which is a direct consequence of the large size of our sample and the insensitivity of near infrared observations to dust extinction.Comment: 16 pages, 8 figures, revised version, accepted for publication in A&

    Period-magnitude relations for M giants in Baade's Window NGC6522

    Full text link
    A large and complete sample of stars with K < 9.75 in the NGC6522 Baade's Window is examined using light curves from MACHO and IJK from DENIS. All 4 of the sequences ABCD in the K vs logP diagram of the LMC are seen in the Bulge. The Bulge sequences however show some differences from the Magellanic Clouds. The sequences may be useful as distance indicators. A new diagram of the frequency of late-type variables is presented. The catalogued SR variables of the solar nbd are found to be a subset of the total of SRs, biased towards large amplitude.Comment: 11 pages 11 fig

    Long Period Variables in the Magellanic Clouds: OGLE + 2MASS + DENIS

    Full text link
    (abridged) The 68000 I-band light curves of variable stars detected by the OGLE survey in the Large and Small Magellanic Clouds (MCs) are fitted by Fourier series, and also correlated with the DENIS and 2MASS databases and with lists of spectroscopically confirmed M-, S- and C-stars. Lightcurves and the results of the lightcurve fitting (periods and amplitudes) and DENIS and 2MASS magnitudes are presented for 2277 M-,S-,C-stars in the MCs. The following aspects are discussed: the K-band period-luminosity relations for the spectroscopically confirmed AGB stars, period changes over a timespan of about 17 years in a subset of about 400 LPVs, and candidate obscured AGB stars.Comment: Astronomy and Astrophysics, accepte

    Mid Infrared Photometry of Mass-Losing AGB Stars

    Get PDF
    We present ground-based mid-infrared imaging for 27 M-, S- and C-type Asymptotic Giant Branch (AGB) stars. The data are compared with those of the database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal is to establish relations between the IR colors, the effective temperature TeffT_{eff}, the luminosity LL and the mass loss rate MË™\dot M, for improving the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are obtained through distance compilations, and by applying previously-derived bolometric corrections; the variability is also studied, using data accumulated since the IRAS epoch. The main results are: i) Values of LL and MË™\dot M for C stars fit relations previously established by us, with Miras being on average more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as compared to evolutionary tracks) are found for S and M stars in our sample: they are confirmed to originate from the dusty circumstellar environment. iii) A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part of the excess is due to AGB models overestimating TeffT_{eff} for C-stars, as a consequence of the lack of suitable molecular opacities. This has a large effect on the colors of C-rich sources and sometimes disentangling the photospheric and circumstellar contributions is difficult; better model atmospheres should be used in stellar evolutionary codes for C stars. iv) The presence of a long-term variability at mid-IR wavelengths seems to be limited to sources with maximum emission in the 8 -- 20 ÎĽ\mum region, usually Mira variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here remained remarkably constant in mid-IR over the last twenty years.Comment: Accepted for publication in the Astronomical Journal - 35 pages (in preprint), 9 figures, 5 table

    Advanced channel coding for space mission telecommand links

    Full text link
    We investigate and compare different options for updating the error correcting code currently used in space mission telecommand links. Taking as a reference the solutions recently emerged as the most promising ones, based on Low-Density Parity-Check codes, we explore the behavior of alternative schemes, based on parallel concatenated turbo codes and soft-decision decoded BCH codes. Our analysis shows that these further options can offer similar or even better performance.Comment: 5 pages, 7 figures, presented at IEEE VTC 2013 Fall, Las Vegas, USA, Sep. 2013 Proc. IEEE Vehicular Technology Conference (VTC 2013 Fall), ISBN 978-1-6185-9, Las Vegas, USA, Sep. 201

    Magellanic Cloud Structure from Near-IR Surveys I: The Viewing Angles of the LMC

    Get PDF
    We present a detailed study of the viewing angles of the LMC disk plane. We find that our viewing direction differs considerably from the commonly accepted values, which has important implications for the structure of the LMC. The discussion is based on an analysis of spatial variations in the apparent magnitude of features in the near-IR color-magnitude diagrams extracted from the DENIS and 2MASS surveys. Sinusoidal brightness variations with a peak-to-peak amplitude of approximately 0.25 mag are detected as function of position angle, for both AGB and RGB stars. This is naturally interpreted as the result of distance variations, due to one side of the LMC plane being closer to us than the opposite side. The best fitting geometric model of an inclined plane yields an inclination angle i = 34.7 +/- 6.2 degrees and line-of-nodes position angle Theta = 122.5 +/- 8.3 degrees. There is tentative evidence that the LMC disk plane may be warped. Traditional methods to estimate the position angle of the line of nodes have used either the major axis position angle Theta_maj of the spatial distribution of tracers on the sky, or the position angle Theta_max of the line of maximum gradient in the velocity field, given that for a circular disk Theta_maj = Theta_max = Theta. The present study does not rely on the assumption of circular symmetry, and is considerably more accurate than previous studies of its kind. We find that the actual position angle of the line of nodes differs considerably from both Theta_maj and Theta_max, for which measurements have fallen in the range 140-190 degrees. This indicates that the intrinsic shape of the LMC disk is not circular, but elliptical, as discussed further in Paper II. [Abridged]Comment: Astronomical Journal, in press. 44 pages, LaTeX, with 8 PostScript figures. Contains minor revisions with respect to previously posted version. Check out http://www.stsci.edu/~marel/lmc.html for a large scale (23x21 degree) stellar number-density image of the LMC constructed from RGB and AGB stars in the 2MASS and DENIS surveys. The paper is available with higher resolution figures from http://www.stsci.edu/~marel/abstracts/abs_R31.htm

    Observations of GRB 060526 Optical Afterglow with Russian-Turkish 1.5-m Telescope

    Full text link
    We present the results of the photometric multicolor observations of GRB 060526 optical afterglow obtained with Russian-Turkish 1.5-m Telescope (RTT150, Mt. Bakirlitepe, Turkey). The detailed measurements of afterglow light curve, starting from about 5 hours after the GRB and during 5 consecutive nights were done. In addition, upper limits on the fast variability of the afterglow during the first night of observations were obtained and the history of afterglow color variations was measured in detail. In the time interval from 6 to 16 hours after the burst, there is a gradual flux decay, which can be described approximately as a power law with an index of -1.14+-0.02. After that the variability on the time scale \delta t < t is observed and the afterglow started to decay faster. The color of the afterglow, V-R=~0.5, is approximately the same during all our observations. The variability is detected on time scales up to \delta t/t =~ 0.0055 at \Delta F_\nu/F_\nu =~ 0.3, which violates some constraints on the variability of the observed emission from ultrarelativistic jet obtained by Ioka et al. (2005). We suggest to explain this variability by the fact that the motion of the emitting shell is no longer ultrarelativistic at this time.Comment: 6 pages, 7 figures, Astronomy Letters, 2007, 33, 797, The on-line data tables and the original text in Russian can be found at http://hea.iki.rssi.ru/grb/060526/indexeng.htm
    • …
    corecore