82 research outputs found
Health burden and economic impact of measles-related hospitalizations in Italy in 2002–2003
Background: A large measles outbreak occurred in Italy in 2002 - 2003. This study evaluates the health burden and economic impact of measles- related hospitalizations in Italy during the specified period. Methods: Hospital discharge abstract data for measles hospitalizations in Italy during 2002 - 2003 were analysed to obtain information regarding number and rates of measles hospitalizations by geographical area and age group, length of hospital stay, and complications. Hospitalization costs were estimated on the basis of Diagnosis- Related Groups. Results: A total of 5,154 hospitalizations were identified, 3,478 ( 67%) of which occurred in children < 15 years of age. Most hospitalizations occurred in southern Italy ( 71 %) and children below 1 year of age presented the greatest hospitalization rates ( 46.2/ 100,000 and 19.0/ 100,000, respectively in 2002 and 2003). Pneumonia was diagnosed in 594 cases ( 11.5%) and encephalitis in 138 cases ( 2.7%). Total hospital charges were approximately (sic) 8.8 million. Conclusion: The nationwide health burden associated with measles during the 2002 - 2003 outbreak was substantial and a high cost was incurred by the Italian National Health Service for the thousands of measles- related hospitalizations which occurred. By assuming that hospital costs represent 40 - 50% of the direct costs of measles cases, direct costs of measles for the two years combined were estimated to be between (sic)17.6 - 22.0 million, which equates to the vaccination of 1.5 - 1.9 million children ( 3 - 4 birth cohorts) with one dose of MMR. The high cost of measles and the severity of its complications fully justify the commitment required to reach measles elimination
Invasive Type e Haemophilus influenzae Disease in Italy
We describe the first reported cases of invasive type e Haemophilus influenzae disease in Italy. All five cases occurred in adults. The isolates were susceptible to ampicillin and eight other antimicrobial agents. Molecular analysis showed two distinct type e strains circulating in Italy, both containing a single copy of the capsulation locus
The pre-vaccination regional epidemiological landscape of measles in Italy: contact patterns, effort needed for eradication, and comparison with other regions of Europe
BACKGROUND: Strong regional heterogeneity and generally sub-optimal rates of measles vaccination in Italy have, to date, hampered attainment of WHO targets for measles elimination, and have generated the need for the new Italian National Measles Elimination Plan. Crucial to success of the plan is the identification of intervention priorities based upon a clear picture of the regional epidemiology of measles derived from the use of data to estimate basic parameters. Previous estimates of measles force of infection for Italy have appeared anomalously low. It has been argued elsewhere that this results from Italian selective under-reporting by age of cases and that the true measles force of infection in Italy is probably similar to that of other European countries. A deeper examination of the evidence for this conjecture is undertaken in the present paper. METHODS: Using monthly regional case notifications data from 1949 to the start of vaccination in 1976 and notifications by age from 1971–76, summary equilibrium parameters (force of infection (FOI), basic reproductive ratio (R(0)) and critical vaccination coverage (p(c))) are calculated for each region and for each of 5 plausible contact patterns. An analysis of the spectra of incidence profiles is also carried out. Finally a transmission dynamics model is employed to explore the correspondence between projections using different estimates of force of infection and data on seroprevalence in Italy. RESULTS: FOI estimates are lower than comparable European FOIs and there is substantial regional heterogeneity in basic reproductive ratios; certain patterns of contact matrices are demonstrated to be unfeasible. Most regions show evidence of 3-year epidemic cycles or longer, and compared with England & Wales there appears to be little synchronisation between regions. Modelling results suggest that the lower FOI estimated from corrected aggregate national data matches serological data more closely than that estimated from typical European data. CONCLUSION: Results suggest forces of infection in Italy, though everywhere remaining below the typical European level, are historically higher in the South where currently vaccination coverage is lowest. There appears to be little evidence to support the suggestion that a higher true force of infection is masked by age bias in reporting
Trends for Influenza-related Deaths during Pandemic and Epidemic Seasons, Italy, 1969–2001
During epidemics, excess deaths were similar in amplitude and time across 3 regions
Escalation of care in children at high risk of clinical deterioration in a tertiary care children’s hospital using the Bedside Pediatric Early Warning System
Background:
Escalation and de-escalation are a routine part of high-quality care that should be matched with clinical needs. The aim of this study was to describe escalation of care in relation to the occurrence and timing of Pediatric Intensive Care Unit (PICU) admission in a cohort of pediatric inpatients with acute worsening of their clinical condition.
Methods:
A monocentric, observational cohort study was performed from January to December 2018. Eligible patients were children: 1) admitted to one of the inpatient wards other than ICU; 2) under the age of 18 years at the time of admission; 3) with two or more Bedside-Paediatric-Early-Warning-System (BedsidePEWS) scores ≥ 7 recorded at a distance of at least one hour and for a period of 4 h during admission. The main outcome -the 24-h disposition – was defined as admission to PICU within 24-h of enrolment or staying in the inpatient ward. Escalation of care was measured using an eight-point scale—the Escalation Index (EI), developed by the authors. The EI was calculated every 6 h, starting from the moment the patient was considered eligible. Analyses used multivariate quantile and logistic regression models.
Results:
The 228 episodes included 574 EI calculated scores. The 24-h disposition was the ward in 129 (57%) and the PICU in 99 (43%) episodes. Patients who were admitted to PICU within 24-h had higher top EI scores [median (IQR) 6 (5–7) vs 4 (3–5), p < 0.001]; higher initial BedsidePEWS scores [median (IQR) 10(8–13) vs. 9 (8–11), p = 0.02], were less likely to have a chronic disease [n = 62 (63%) vs. n = 127 (98%), p < 0.0001], and were rated by physicians as being at a higher risk of having a cardiac arrest (p = 0.01) than patients remaining on the ward. The EI increased over 24 h before urgent admission to PICU or cardiac arrest by 0.53 every 6-h interval (CI 0.37–0.70, p < 0.001), while it decreased by 0.25 every 6-h interval (CI -0.36–0.15, p < 0.001) in patients who stayed on the wards.
Conclusion:
Escalation of care was related to temporal changes in severity of illness, patient background and environmental factors. The EI index can improve responses to evolving critical illness
Vaccination coverage and reasons for non-vaccination in a district of Istanbul
BACKGROUND: In order to control and eliminate the vaccine preventable diseases it is important to know the vaccination coverage and reasons for non-vaccination. The primary objective of this study was to determine the complete vaccination rate; the reasons for non-vaccination and the predictors that influence vaccination of children. The other objective was to determine coverage of measles vaccination of the Measles Immunization Days (MID) 2005 for children aged 9 month to 6 years in a region of Umraniye, Istanbul, Turkey. METHODS: A '30 Ă— 7' cluster sampling design was used as the sampling method. Thirty streets were selected at random from study area. Survey data were collected by a questionnaire which was applied face to face to parents of 221 children. A Chi-square test and logistic regression was used for the statistical analyses. Content analysis method was used to evaluate the open-ended questions. RESULTS: The complete vaccination rate for study population was 84.5% and 3.2% of all children were totally non-vaccinated. The siblings of non-vaccinated children were also non-vaccinated. Reasons for non-vaccination were as follows: being in the village and couldn't reach to health care services; having no knowledge about vaccination; the father of child didn't allow vaccination; intercurrent illness of child during vaccination time; missed opportunities like not to shave off a vial for only one child. In logistic regression analysis, paternal and maternal levels of education and immigration time of both parents to Istanbul were found to influence whether children were completely vaccinated or non-vaccinated. Measles vaccination coverage during MID was 79.3%. CONCLUSION: Efforts to increase vaccination coverage should take reasons for non-vaccination into account
Effective, Robust Design of Community Mitigation for Pandemic Influenza: A Systematic Examination of Proposed US Guidance
BACKGROUND: The US government proposes pandemic influenza mitigation guidance that includes isolation and antiviral treatment of ill persons, voluntary household member quarantine and antiviral prophylaxis, social distancing of individuals, school closure, reduction of contacts at work, and prioritized vaccination. Is this the best strategy combination? Is choice of this strategy robust to pandemic uncertainties? What are critical enablers of community resilience? METHODS AND FINDINGS: We systematically simulate a broad range of pandemic scenarios and mitigation strategies using a networked, agent-based model of a community of explicit, multiply-overlapping social contact networks. We evaluate illness and societal burden for alterations in social networks, illness parameters, or intervention implementation. For a 1918-like pandemic, the best strategy minimizes illness to <1% of the population and combines network-based (e.g. school closure, social distancing of all with adults' contacts at work reduced), and case-based measures (e.g. antiviral treatment of the ill and prophylaxis of household members). We find choice of this best strategy robust to removal of enhanced transmission by the young, additional complexity in contact networks, and altered influenza natural history including extended viral shedding. Administration of age-group or randomly targeted 50% effective pre-pandemic vaccine with 7% population coverage (current US H5N1 vaccine stockpile) had minimal effect on outcomes. In order, mitigation success depends on rapid strategy implementation, high compliance, regional mitigation, and rigorous rescinding criteria; these are the critical enablers for community resilience. CONCLUSIONS: Systematic evaluation of feasible, recommended pandemic influenza interventions generally confirms the US community mitigation guidance yields best strategy choices for pandemic planning that are robust to a wide range of uncertainty. The best strategy combines network- and case-based interventions; network-based interventions are paramount. Because strategies must be applied rapidly, regionally, and stringently for greatest benefit, preparation and public education is required for long-lasting, high community compliance during a pandemic
Age-prioritized use of antivirals during an influenza pandemic
<p>Abstract</p> <p>Background</p> <p>The WHO suggested that governments stockpile, as part of preparations for the next influenza pandemic, sufficient influenza antiviral drugs to treat approximately 25% of their populations. Our aim is two-fold: first, since in many countries the antiviral stockpile is well below this level, we search for suboptimal strategies based on treatment provided only to an age-dependent fraction of cases. Second, since in some countries the stockpile exceeds the suggested minimum level, we search for optimal strategies for post-exposure prophylactic treatment of close contacts of cases.</p> <p>Methods</p> <p>We used a stochastic, spatially structured individual-based model, considering explicit transmission in households, schools and workplaces, to simulate the spatiotemporal spread of an influenza pandemic in Italy and to evaluate the efficacy of interventions based on age-prioritized use of antivirals.</p> <p>Results</p> <p>Our results show that the antiviral stockpile required for treatment of cases ranges from 10% to 35% of the population for <it>R</it><sub>0 </sub>in 1.4 – 3. No suboptimal strategies, based on treatment provided to an age-dependent fraction of cases, were found able to remarkably reduce both clinical attack rate and antiviral drugs needs, though they can contribute to largely reduce the excess mortality. Treatment of all cases coupled with prophylaxis provided to younger individuals is the only intervention resulting in a significant reduction of the clinical attack rate and requiring a relatively small stockpile of antivirals.</p> <p>Conclusion</p> <p>Our results strongly suggest that governments stockpile sufficient influenza antiviral drugs to treat approximately 25% of their populations, under the assumption that <it>R</it><sub>0 </sub>is not much larger than 2. In countries where the number of antiviral stockpiled exceeds the suggested minimum level, providing prophylaxis to younger individuals is an option that could be taken into account in preparedness plans. In countries where the number of antivirals stockpiled is well below 25% of the population, priority should be decided based on age-specific case fatality rates. However, late detection of cases (administration of antivirals 48 hours after the clinical onset of symptoms) dramatically affects the efficacy of both treatment and prophylaxis.</p
- …