1,225 research outputs found

    Effect of metal clusters on the swelling of gold-fluorocarbon-polymer composite films

    Full text link
    We have investigated the phenomenon of swelling due to acetone diffusion in fluorocarbon polymer films doped with different gold concentrations below the percolation threshold. The presence of the gold clusters in the polymer is shown to improve the mixing between the fluorocarbon polymer and the acetone, which is not a good solvent for this kind of polymers. In order to explain the experimental results the stoichiometry and the morphology of the polymer--metal system have been studied and a modified version of the Flory--Huggins model has been developed

    Ag-based synergistic antimicrobial composites. A critical review

    Get PDF
    The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs)

    Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    Get PDF
    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations

    Cu nanoparticle-loaded nanovesicles with antibiofilm properties. Part i: Synthesis of new hybrid nanostructures

    Get PDF
    Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake. Their capacity for hydrophilic/hydrophobic balance and carrier capacity could be advantageous to prepare novel hybrid nanostructures based on metal NPs (Me-NPs). In this work, NVs were loaded with CuNPs, which have been reported to have a biofilm inhibition effect. These hybrid materials could improve the effect of conventional antibacterial agents. CuNPs were electro-synthesized by the sacrificial anode electrolysis technique in organic media and characterized in terms of morphology through transmission electron microscopy (TEM). The NVs were prepared by the thin film hydration method in aqueous media, using phosphatidylcholine (PC) and cholesterol as a membrane stabilizer. The nanohybrid systems were purified to remove non-encapsulated NPs. The size distribution, morphology and stability of the NV systems were studied. Different quaternary ammonium salts in vesicular systems made of PC were tested as stabilizing surfactants for the synthesis and inclusion of CuNPs. The entrapment of charged metal NPs was demonstrated. NPs attached preferably to the membrane, probably due to the attraction of their hydrophobic shell to the phospholipid bilayers. The high affinity between benzyl-dimethyl-hexadecyl-ammonium chloride (BDHAC) and PC allowed us to obtain stable hybrid NVs c.a. 700 nm in diameter. The stability of liposomes increased with NP loading, suggesting a charge-stabilization effect in a novel antibiofilm nanohybrid material

    NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer

    Get PDF
    The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod–Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment

    Effect of the surface chemical composition and of added metal cation concentration on the stability of metal nanoparticles synthesized by pulsed laser ablation in water

    Get PDF
    Metal nanoparticles (NPs) made of gold, silver, and platinum have been synthesized by means of pulsed laser ablation in liquid aqueous solution. Independently from the metal nature, all NPs have an average diameter of 10 ± 5 nm. The ζ-potential values are:-62 ± 7 mV for gold,-44 ± 2 mV for silver and-58 ± 3 for platinum. XPS analysis demonstrates the absence of metal oxides in the case of gold and silver NPs. In the case of platinum NPs, 22% of the particle surface is ascribed to platinum oxidized species. This points to a marginal role of the metal oxides in building the negative charge that stabilizes these colloidal suspensions. The investigation of the colloidal stability of gold NPs in the presence of metal cations shows these NPs can be destabilized by trace amounts of selected metal ions. The case of Ag+ is paradigmatic since it is able to reduce the NP ζ-potential and to induce coagulation at concentrations as low as 3 μM, while in the case of K+ the critical coagulation concentration is around 8 mM. It is proposed that such a huge difference in destabilization power between monovalent cations can be accounted for by the difference in the reduction potential

    Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants

    Get PDF
    Pulsars, formed during supernova explosions, are known to be sources of relativistic magnetized winds whose interaction with the expanding supernova remnants (SNRs) gives rise to a pulsar wind nebula (PWN). We present spherically symmetric relativistic magnetohydrodynamics (RMHD) simulations of the interaction of a pulsar wind with the surrounding SNR, both in particle and magnetically dominated regimes. As shown by previous simulations, the evolution can be divided in three phases: free expansion, a transient phase characterized by the compression and reverberation of the reverse shock, and a final Sedov expansion. The evolution of the contact discontinuity between the PWN and the SNR (and consequently of the SNR itself) is almost independent of the magnetization of the nebula as long as the total (magnetic plus particle) energy is the same. However, a different behaviour of the PWN internal structure is observable during the compression-reverberation phase, depending on the degree of magnetization=2E The simulations were performed using the third order conservative scheme by Del Zanna et al. (2003).Comment: 11 pages, Latex, 22 Encapsulated PostScript figures, accepted f or publication on A&
    • …
    corecore