3,858 research outputs found

    Orientation-dependent binding energy of graphene on palladium

    Full text link
    Using density functional theory calculations, we show that the binding strength of a graphene monolayer on Pd(111) can vary between physisorption and chemisorption depending on its orientation. By studying the interfacial charge transfer, we have identified a specific four-atom carbon cluster that is responsible for the local bonding of graphene to Pd(111). The areal density of such clusters varies with the in-plane orientation of graphene, causing the binding energy to change accordingly. Similar investigations can also apply to other metal substrates, and suggests that physical, chemical, and mechanical properties of graphene may be controlled by changing its orientation.Comment: 5 pages, 6 figure

    More Than 1700 Years of Word Equations

    Full text link
    Geometry and Diophantine equations have been ever-present in mathematics. Diophantus of Alexandria was born in the 3rd century (as far as we know), but a systematic mathematical study of word equations began only in the 20th century. So, the title of the present article does not seem to be justified at all. However, a linear Diophantine equation can be viewed as a special case of a system of word equations over a unary alphabet, and, more importantly, a word equation can be viewed as a special case of a Diophantine equation. Hence, the problem WordEquations: "Is a given word equation solvable?" is intimately related to Hilbert's 10th problem on the solvability of Diophantine equations. This became clear to the Russian school of mathematics at the latest in the mid 1960s, after which a systematic study of that relation began. Here, we review some recent developments which led to an amazingly simple decision procedure for WordEquations, and to the description of the set of all solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings of CAI 2015, Stuttgart, Germany, September 1 - 4, 201

    False Documents in Former USSR

    Get PDF
    The false document trade is prevalent in three areas: counterfeiting of passports and identity cards,creation of false documents for vehicle sales, and education certifications. This activity facilitates the movements of terrorists from Afghanistan and Somalia through Tajikistan and toward theWest via Moldova. This paper explores the techniques used in the production and marketing of false documents

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    Histological and immunohistochemical evaluation of mandibular bone tissue regeneration

    Get PDF
    The purpose of the study was to perform an immunohistochemical and histological evaluation of samples taken from different bone regeneration procedures in atrophic human mandible. 30 patients (15 men and 15 women, age range of 35-60 years), non-smokers, with good general and oral health were recruited in this study and divided into three groups. The first group included patients who were treated with blood Concentration Growth Factors (bCGF), the second group included patients who were treated with a mixture of bCGF and autologous bone, while the third group of patients was treated with bCGF and tricalcium phosphate/hydroxyapatite (TCP-HA). Six months after the regenerative procedures, all patients undergone implant surgery, and a bone biopsy was carried out in the site of implant insertion. Each sample was histologically and immunohistochemically examined. Histological evaluation showed a complete bone formation for group II, partial ossification for group I, and moderate ossification for group III. Immunohistochemical analysis demonstrated a statistically significant difference between the three groups, and the best clinical result was obtained with a mixture of bCGF and autologous bone

    Stochastic Simulation of Process Calculi for Biology

    Full text link
    Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Surface-sensitive NMR in optically pumped semiconductors

    Full text link
    We present a scheme of surface-sensitive nuclear magnetic resonance in optically pumped semiconductors, where an NMR signal from a part of the surface of a bulk compound semiconductor is detected apart from the bulk signal. It utilizes optically oriented nuclei with a long spin-lattice relaxation time as a polarization reservoir for the second (target) nuclei to be detected. It provides a basis for the nuclear spin polarizer [IEEE Trans. Appl. Supercond. 14, 1635 (2004)], which is a polarization reservoir at a surface of the optically pumped semiconductor that polarizes nuclear spins in a target material in contact through the nanostructured interfaces.Comment: 4 pages, 5 figure

    A CBM Time-of-Flight outer wall layout

    Get PDF

    Understanding single-top-quark production and jets at hadron colliders

    Full text link
    I present an analysis of fully differential single-top-quark production plus jets at next-to-leading order. I describe the effects of jet definitions, top-quark mass, and higher orders on the shapes and normalizations of the kinematic distributions, and quantify all theoretical uncertainties. I explain how to interpret next-to-leading-order jet calculations, and compare them to showering event generators. Using the program ZTOP, I show that HERWIG and PYTHIA significantly underestimate both s-channel and t-channel single-top-quark production, and propose a scheme to match the relevant samples to the next-to-leading-order predictions.Comment: 40 pgs., revtex4, 35 ps figs; added Fig. 4, 1 Ref., minor clarifications, to appear in Phys. Rev.
    corecore