3,858 research outputs found
Orientation-dependent binding energy of graphene on palladium
Using density functional theory calculations, we show that the binding
strength of a graphene monolayer on Pd(111) can vary between physisorption and
chemisorption depending on its orientation. By studying the interfacial charge
transfer, we have identified a specific four-atom carbon cluster that is
responsible for the local bonding of graphene to Pd(111). The areal density of
such clusters varies with the in-plane orientation of graphene, causing the
binding energy to change accordingly. Similar investigations can also apply to
other metal substrates, and suggests that physical, chemical, and mechanical
properties of graphene may be controlled by changing its orientation.Comment: 5 pages, 6 figure
More Than 1700 Years of Word Equations
Geometry and Diophantine equations have been ever-present in mathematics.
Diophantus of Alexandria was born in the 3rd century (as far as we know), but a
systematic mathematical study of word equations began only in the 20th century.
So, the title of the present article does not seem to be justified at all.
However, a linear Diophantine equation can be viewed as a special case of a
system of word equations over a unary alphabet, and, more importantly, a word
equation can be viewed as a special case of a Diophantine equation. Hence, the
problem WordEquations: "Is a given word equation solvable?" is intimately
related to Hilbert's 10th problem on the solvability of Diophantine equations.
This became clear to the Russian school of mathematics at the latest in the mid
1960s, after which a systematic study of that relation began.
  Here, we review some recent developments which led to an amazingly simple
decision procedure for WordEquations, and to the description of the set of all
solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings
  of CAI 2015, Stuttgart, Germany, September 1 - 4, 201
False Documents in Former USSR
The false document trade is prevalent in three areas: counterfeiting of passports and identity cards,creation of false documents for vehicle sales, and education certifications. This activity facilitates the movements of terrorists from Afghanistan and Somalia through Tajikistan and toward theWest via Moldova. This paper explores the techniques used in the production and marketing of false documents
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
Histological and immunohistochemical evaluation of mandibular bone tissue regeneration
The purpose of the study was to perform an immunohistochemical and histological evaluation of samples taken from different bone regeneration procedures in atrophic human mandible. 30 patients (15 men and 15 women, age range of 35-60 years), non-smokers, with good general and oral health were recruited in this study and divided into three groups. The first group included patients who were treated with blood Concentration Growth Factors (bCGF), the second group included patients who were treated with a mixture of bCGF and autologous bone, while the third group of patients was treated with bCGF and tricalcium phosphate/hydroxyapatite (TCP-HA). Six months after the regenerative procedures, all patients undergone implant surgery, and a bone biopsy was carried out in the site of implant insertion. Each sample was histologically and immunohistochemically examined. Histological evaluation showed a complete bone formation for group II, partial ossification for group I, and moderate ossification for group III. Immunohistochemical analysis demonstrated a statistically significant difference between the three groups, and the best clinical result was obtained with a mixture of bCGF and autologous bone
Stochastic Simulation of Process Calculi for Biology
Biological systems typically involve large numbers of components with
complex, highly parallel interactions and intrinsic stochasticity. To model
this complexity, numerous programming languages based on process calculi have
been developed, many of which are expressive enough to generate unbounded
numbers of molecular species and reactions. As a result of this expressiveness,
such calculi cannot rely on standard reaction-based simulation methods, which
require fixed numbers of species and reactions. Rather than implementing custom
stochastic simulation algorithms for each process calculus, we propose to use a
generic abstract machine that can be instantiated to a range of process calculi
and a range of reaction-based simulation algorithms. The abstract machine
functions as a just-in-time compiler, which dynamically updates the set of
possible reactions and chooses the next reaction in an iterative cycle. In this
short paper we give a brief summary of the generic abstract machine, and show
how it can be instantiated with the stochastic simulation algorithm known as
Gillespie's Direct Method. We also discuss the wider implications of such an
abstract machine, and outline how it can be used to simulate multiple calculi
simultaneously within a common framework.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Surface-sensitive NMR in optically pumped semiconductors
We present a scheme of surface-sensitive nuclear magnetic resonance in
optically pumped semiconductors, where an NMR signal from a part of the surface
of a bulk compound semiconductor is detected apart from the bulk signal. It
utilizes optically oriented nuclei with a long spin-lattice relaxation time as
a polarization reservoir for the second (target) nuclei to be detected. It
provides a basis for the nuclear spin polarizer [IEEE Trans. Appl. Supercond.
14, 1635 (2004)], which is a polarization reservoir at a surface of the
optically pumped semiconductor that polarizes nuclear spins in a target
material in contact through the nanostructured interfaces.Comment: 4 pages, 5 figure
Understanding single-top-quark production and jets at hadron colliders
I present an analysis of fully differential single-top-quark production plus
jets at next-to-leading order. I describe the effects of jet definitions,
top-quark mass, and higher orders on the shapes and normalizations of the
kinematic distributions, and quantify all theoretical uncertainties. I explain
how to interpret next-to-leading-order jet calculations, and compare them to
showering event generators. Using the program ZTOP, I show that HERWIG and
PYTHIA significantly underestimate both s-channel and t-channel
single-top-quark production, and propose a scheme to match the relevant samples
to the next-to-leading-order predictions.Comment: 40 pgs., revtex4, 35 ps figs; added Fig. 4, 1 Ref., minor
  clarifications, to appear in Phys. Rev. 
- …
