864 research outputs found

    Contraceptive use and sexual function: a comparison of Italian female medical students and women attending family planning services

    Get PDF
    Objectives: The aims of the study were to understand how education relates to contraceptive choice and how sexual function can vary in relation to the use of a contraceptive method. Methods: We surveyed female medical students and women attending a family planning service (FPS) in Italy. Participants completed an online questionnaire which asked for information on sociodemographics, lifestyle, sexuality and contraceptive use and also included items of the Female Sexual Function Index (FSFI). Results: The questionnaire was completed by 413 women (362 students and 51 women attending the FPS) between the ages of 18 and 30 years. FSFI scores revealed a lower risk of sexual dysfunction among women in the control group who did not use oral hormonal contraception. The differences in FSFI total scores between the two study groups, when subdivided by the primary contraceptive method used, was statistically significant (p < 0.005). Women using the vaginal ring had the lowest risk of sexual dysfunction, compared with all other women, and had a positive sexual function profile. In particular, the highest FSFI domain scores were lubrication, orgasm and satisfaction, also among the control group. Expensive contraception, such as long-acting reversible contraception, was not preferred by this young population, even though such methods are more contemporary and manageable. Compared with controls, students had lower compliance with contraception and a negative attitude towards voluntary termination of pregnancy. Conclusion: Despite their scientific knowledge, Italian female medical students were found to need sexual and contraceptive assistance. A woman's sexual function responds to her awareness of her body and varies in relation to how she is guided in her contraceptive choice. Contraceptive counselling is an excellent means to improve female sexuality

    The heuristic strategies for assessing wireless sensor network: an event-based formal approach

    Get PDF
    Wireless Sensor Networks (WSNs) are increasingly being adopted in critical applications. In these networks undesired events may undermine the reliability level; thus their effects need to be properly assessed from the early stages of the development process onwards to minimize the chances of unexpected problems during use. In this paper we propose two heuristic strategies: what-if analysis and robustness checking. They allow to drive designers towards optimal WSN deployment solutions, from the point of view of the connection and data delivery resiliency, exploiting a formal approach based on the event calculus formal language. The heuristics are backed up by a support tool aimed to simplify their adoption by system designers. The tool allows to specify the target WSN in a user-friendly way and it is able to elaborate the two heuristic strategies by means of the event calculus specifications automatically generated. The WSN reliability is assessed computing a set of specific metrics. The effectiveness of the strategies is shown in the context of three case studies

    A combined Rayleigh-Raman lidar for measurements of tropospheric water vapour and aerosol profiles

    Get PDF
    The receiver of the Differential Absorption Lidar system of the University of L’Aquila (Italy) has been upgraded for the detection of Raman scattering from nitrogen and water vapour induced by XeCl and XeF excimer laser lines. In this configuration, only the XeF source is activated, so we can measure the tropospheric water vapour mixing ratio profiles with a height resolution of 300 m and 10 min in time. The lower limit sensitivity for the mixing ratio of water vapour is about 2 Q1024 and the precision ranges between 5% at 2 km and 50% at 9 km. The aerosol back-scattering ratio profiles can be measured with the same altitude and time resolution up to the lower stratosphere, the relative error is below 5% in the troposphere and about 30% at the highest altitudes. Comparisons with coincident PTU balloon-sondes show that the performances of the system in measuring the tropospheric water vapour are well calibrated for studying the water vapour evolution and cloud formation in the troposphere

    The Role of Field Data for Analyzing the Dependability of Short Range Wireless Technologies

    Get PDF
    Abstract. The migration from mobile to ubiquitous Internet is at hand, due to the intense growth of short range wireless technologies. Users accessing the Internet through wireless devices are increasing, if compared to &quot;wired&quot; ones, and they expect the same dependability level they already experience on wired networks, that is high quality &quot;always on&quot; wireless networks. But how can we analyze the dependability level of a wireless network? Direct analysis of failures from the field of application is an effective practice to understand the actual dependability behavior of an operational system. However, despite its wide use over the last four decades on a large variety of systems, field data analysis has rarely been applied to wireless networks. Through the experience gained from extensive failure analysis of Bluetooth networks, the article shows how field failure data can play a key role to fill the gap on understanding the dependability behavior of wireless networks

    Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level

    Get PDF
    Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation fourier transform infrared micro-spectroscopy (SR-microftiR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR- microftiR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies

    Sensible heat flux and boundary layer depth measurements by Doppler SODAR and sonic anemometer data

    Get PDF
    A validation of a simple mixed-layer similarity relationship, firstly proposed by Panofsky and McCormick (1960), is presented for wind speeds up to 7 ms21 and over an uneven terrain. The surface heat flux and the Planetary Boundary Layer depth, zi, are retrieved from this relationship, by using SODAR measurements of the vertical velocity variance s 2 w, under the hypothesis that the heat flux linearly decreases with height. All the measurements are relative to days characterized by high-pressure conditions, during periods of well-developed convection. The values of the surface heat flux obtained from such a method are compared with those obtained by applying the eddy correlation technique to the vertical wind velocities and virtual temperatures measured by a sonic anemometer. The values of zi obtained from the same relationship are compared with the height of the lowest inversion layer estimated from the facsimile record of the echoes received by the vertical antenna of the SODAR. The spectral behavior of vertical and longitudinal wind velocity from the anemometer and the SODAR is examined, too. In such a way an independent estimate of zi is obtained from the position of the spectral maximum

    Identification, full-length genome sequencing, and field survey of citrus vein enation virus in Italy

    Get PDF
    Citrus vein enation virus (CVEV) was described in Spain and then it has been reported in several citrus growing areas of Asia, America and Australia. Here, the occurrence of CVEV in Italy has been documented for the first time. The full genome sequence of a CVEV Italian isolate (14Q) was determined by high-throughput sequencing and the presence of the virus was confirmed by RT-PCR and graft-transmission to indicator plants, from which the virus was recovered six-months post-inoculation. Phylogenetic analysis based on the full-length genome of CVEV isolates from different countries showed that they are phylogenetically related to each other based on their geographic origin, rather than on their host and that the Italian isolate is more closely related to the Spanish isolate than to the other ones. A field survey revealed the presence of CVEV in some areas of Campania region (southern Italy), prevalently infecting lemon trees. In the frame of this survey, kumquat was identified for the first time as a host of CVEV. No symptoms were observed in the field so far. The infection of asymptomatic hosts and the transmission by aphid species present in Italy increase the risk that the virus could further spread

    Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability

    Get PDF
    Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction

    Signal enhancement and efficient DTW-based comparison for wearable gait recognition

    Get PDF
    The popularity of biometrics-based user identification has significantly increased over the last few years. User identification based on the face, fingerprints, and iris, usually achieves very high accuracy only in controlled setups and can be vulnerable to presentation attacks, spoofing, and forgeries. To overcome these issues, this work proposes a novel strategy based on a relatively less explored biometric trait, i.e., gait, collected by a smartphone accelerometer, which can be more robust to the attacks mentioned above. According to the wearable sensor-based gait recognition state-of-the-art, two main classes of approaches exist: 1) those based on machine and deep learning; 2) those exploiting hand-crafted features. While the former approaches can reach a higher accuracy, they suffer from problems like, e.g., performing poorly outside the training data, i.e., lack of generalizability. This paper proposes an algorithm based on hand-crafted features for gait recognition that can outperform the existing machine and deep learning approaches. It leverages a modified Majority Voting scheme applied to Fast Window Dynamic Time Warping, a modified version of the Dynamic Time Warping (DTW) algorithm with relaxed constraints and majority voting, to recognize gait patterns. We tested our approach named MV-FWDTW on the ZJU-gaitacc, one of the most extensive datasets for the number of subjects, but especially for the number of walks per subject and walk lengths. Results set a new state-of-the-art gait recognition rate of 98.82% in a cross-session experimental setup. We also confirm the quality of the proposed method using a subset of the OU-ISIR dataset, another large state-of-the-art benchmark with more subjects but much shorter walk signals
    • …
    corecore