41 research outputs found

    Zebrafish as an emerging model to study estrogen receptors in neural development

    Get PDF
    Estrogens induce several regulatory signals in the nervous system that are mainly mediated through estrogen receptors (ERs). ERs are largely expressed in the nervous system, yet the importance of ERs to neural development has only been elucidated over the last decades. Accumulating evidence shows a fundamental role for estrogens in the development of the central and peripheral nervous systems, hence, the contribution of ERs to neural function is now a growing area of research. The conservation of the structure of the ERs and their response to estrogens make the zebrafish an interesting model to dissect the role of estrogens in the nervous system. In this review, we highlight major findings of ER signaling in embryonic zebrafish neural development and compare the similarities and differences to research in rodents. We also discuss how the recent generation of zebrafish ER mutants, coupled with the availability of several transgenic reporter lines, its amenability to pharmacological studies and in vivo live imaging, could help us explore ER function in embryonic neural development

    Tandem PHD Fingers of MORF/MOZ Acetyltransferases Display Selectivity for Acetylated Histone H3 and Are Required for the Association with Chromatin

    Get PDF
    MORF (monocytic leukemia zinc-finger protein (MOZ)-related factor) and MOZ are catalytic subunits of histone acetyltransferase (HAT) complexes essential in hematopoiesis, neurogenesis, skeletogenesis and other developmental programs and implicated in human leukemias. The canonical HAT domain of MORF/MOZ is preceded by a tandem of plant homeodomain (PHD) fingers whose biological roles and requirements for MORF/MOZ activity are unknown. Here we demonstrate that the tandem PHD1/2 fingers of MORF recognize the N-terminal tail of histone H3. Acetylation of Lys9 (H3K9ac) or Lys14 (H3K14ac) enhances binding of MORF PHD1/2 to unmodified H3 peptides two to three fold. The selectivity for acetylated H3 tail is conserved in the double PHD1/2 fingers of MOZ. This interaction requires the intact N-terminus of histone H3 and is inhibited by trimethylation of Lys4. Biochemical analysis using NMR, fluorescence spectroscopy and mutagenesis identified key amino acids of MORF PHD1/2 necessary for the interaction with histones. Fluorescence microscopy and immunoprecipitation experiments reveal that both PHD fingers are required for binding to H3K14ac in vivo and localization to chromatin. The HAT assays indicate that the interaction with H3K14ac may promote enzymatic activity in trans. Together, our data suggest that the PHD1/2 fingers play a role in MOZ/MORF HATs association with the chromatic regions enriched in acetylated marks

    Rho GTPases Signaling in Zebrafish Development and Disease

    No full text
    Cells encounter countless external cues and the specificity of their responses is translated through a myriad of tightly regulated intracellular signals. For this, Rho GTPases play a central role and transduce signals that contribute to fundamental cell dynamic and survival events. Here, we review our knowledge on how zebrafish helped us understand the role of some of these proteins in a multitude of in vivo cellular behaviors. Zebrafish studies offer a unique opportunity to explore the role and more specifically the spatial and temporal dynamic of Rho GTPases activities within a complex environment at a level of details unachievable in any other vertebrate organism

    miR-98 delays skeletal muscle differentiation by down-regulating E2F5.

    No full text
    International audienceA genome-wide screen had previously shown that knocking down miR-98 and let-7g, two miRNAs of the let-7 family, leads to a dramatic increase in terminal myogenic differentiation. In the present paper, we report that a transcriptomic analysis of human myoblasts, where miR-98 was knocked down, revealed that approximately 240 genes were sensitive to miR-98 depletion. Among these potential targets of miR-98, we identified the transcriptional repressor E2F5 and showed that it is a direct target of miR-98. Knocking down simultaneously E2F5 and miR-98 almost fully restored normal differentiation, indicating that E2F5 is involved in the regulation of skeletal muscle differentiation. We subsequently show that E2F5 can bind to the promoters of two inhibitors of terminal muscle differentiation, ID1 (inhibitor of DNA binding 1) and HMOX1 (heme oxygenase 1), which decreases their expression in skeletal myoblasts. We conclude that miR-98 regulates muscle differentiation by altering the expression of the transcription factor E2F5 and, in turn, of multiple E2F5 targets

    The 26S proteasome system degrades the ERM transcription factor and regulates its transcription-enhancing activity

    No full text
    ERM is a member of the ETS transcription factor family. High levels of the corresponding mRNA are detected in a variety of human breast cancer cell lines, as well as in aggressive human breast tumors. As ERM protein is almost undetectable in these cells, high degradation of this transcription factor has been postulated. Here we have investigated whether ERM degradation might depend on the proteasome pathway. We show that endogenous and ectopically expressed ERM protein is short-lived protein and undergoes proteasome-dependent degradation. Deletion mutagenesis studies indicate that the 61 C-terminal amino acids of ERM are critical for its proteolysis and serve as a degradation signal. Although ERM conjugates with ubiquitin, this post-translational modification does not depend on the C-terminal domain. We have used an Ets-responsive ICAM-1 reporter plasmid to show that the ubiquitin-proteasome pathway can affect transcriptional function of ERM. Thus, ERM is subject to degradation via the 26S proteasome pathway, and this pathway probably plays an important role in regulating ERM transcriptional activity. © 2007 Nature Publishing Group. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish

    No full text
    International audienceAxon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery

    Post-transcriptional modulation of interleukin 8 by CNOT6L regulates skeletal muscle differentiation

    No full text
    International audienceCNOT6L is a deadenylase subunit belonging to the CCR4-NOT complex, a major deadenylase complex in eukaryotes involved at multiple levels in regulation of gene expression. While CNOT6L is expressed in skeletal muscle cells, its specific functions in this tissue are still largely unknown. Our previous work highlighted the functional of CNOT6L in skeletal muscle cell differentiation. To further explore how CNOT6L regulates myogenesis, we used here gene expression analysis to identify CNOT6L mRNA targets in human myoblasts. Among these novel targets, IL-8 (interleukin 8) mRNA was the most upregulated in CNOT6L knock-down (KD) cells. Biochemical approaches and poly (A) tail length assays showed that IL-8 mRNA is a direct target of CNOT6L, and further investigations by loss- and gain-of-function assays pointed out that IL-8 is an important effector of myogenesis. Therefore, we have characterized CNOT6L-IL-8 as a new signaling axis that regulates myogenesis

    SUMO modification of the Ets-related transcription factor ERM inhibits its transcriptional activity

    No full text
    A variety of transcription factors are post-translationally modified by SUMO, a 97-residue ubiquitin-like protein bound covalently to the targeted lysine. Here we describe SUMO modification of the Ets family member ERM at positions 89, 263, 293, and 350. To investigate how SUMO modification affects the function of ERM, Ets-responsive intercellular adhesion molecule 1 (ICAM-1) and E74 reporter plasmids were employed to demonstrate that SUMO modification causes inhibition of ERM-dependent transcription without affecting the subcellular localization, stability, or DNA-binding capacity of the protein. When the adenoviral protein Gam1 or the SUMO protease SENP1 was used to inhibit the SUMO modification pathway, ERM-dependent transcription was de-repressed. These results demonstrate that ERM is subject to SUMO modification and that this post-translational modification causes inhibition of transcription-enhancing activity. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Les facteurs de transcription du groupe PEA3: Régulateurs transcriptionnels dans le processus de cancérisation

    No full text
    Erm, Er81, and Pea3 are the three members of the PEA3 group which belong to the Ets transcription factors family. These proteins regulate transcription of multiple target genes, such as those encoding several matrix metalloproteinases (MMP), which are enzymes degrading the extracellular matrix during cancer metastasis. In fact, PEA3-group genes are often overexpressed in different types of human cancers that also over-express these MMP and display a disseminating phenotype. In experimental models, regulation of PEA3 group member expression has been shown to influence the metastatic process, thus suggesting that these factors play a key role in metastasis. © John Libbey Eurotext.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    The Ets transcription factors of the PEA3 group: Transcriptional regulators in metastasis

    No full text
    The PEA3 group is composed of three highly conserved Ets transcription factors: Erm, Er81, and Pea3. These proteins regulate transcription of multiple genes, and their transactivating potential is affected by post-translational modifications. Among their target genes are several matrix metalloproteases (MMPs), which are enzymes degrading the extracellular matrix during normal remodelling events and cancer metastasis. In fact, PEA3-group genes are often over-expressed in different types of cancers that also over-express these MMPs and display a disseminating phenotype. Experimental regulation of the synthesis of PEA3 group members influences the metastatic process. This suggests that these factors play a key role in metastasis. © 2006 Elsevier B.V. All rights reserved.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore