1,233 research outputs found

    Surface photovoltage effects in photoemission from metal-GaP(110) interfaces: Importance for band bending evaluation

    No full text
    Photoelectron spectra from metal overlayers on GaP(110) show that the photoionization light source may induce a surface photovoltage, causing an energy shift of valence- and core-level peaks. We analyze the dependence of this surface photovoltage on metal coverage, substrate doping, and temperature. The presence of a surface photovoltage seriously affects the determination of surface band bending by photoelectron spectroscopy, a technique which is generally thought to reflect the equilibrium electronic structure of metal-semiconductor interfaces

    Surface photovoltage effects in photoemission from metal/GaP(110) interfaces: Temperature‐dependent Fermi level movement

    Get PDF
    In recent experiments of metal deposition onto cleaved GaP(110) surfaces we have shown that light sources used in photoelectron spectroscopy may induce a surface photovoltage (SPV), which causes a substantial deviation from the ground state potential distribution, and may induce errors in the determination of band bending by photoemission. Here we analyze the temperature‐dependent movement of the surface Fermi level in n‐ and p‐type GaP(110) surfaces as a function of indium and silver deposition, taking into account the presence of the SPV. It is found that changes in the substrate temperature not only modify the adlayer morphology and metallicity, but also the surface electron‐hole recombination rate. We observe that the temperature‐dependent shift of the semiconductor core levels is always accompanied by a similar shift of the metal core level and Fermi edge, suggesting that the reversible temperature‐dependent band bending recently reported for metal/III–V semiconductor interfaces is related to the SPV, and does not represent a ground state property of the interfacial electronic structure. Implications of these results on current models concerning Schottky barrier formation are discussed

    Electronic structure of Ca1x_{1-x}Srx_xVO3_3: a tale of two energy-scales

    Get PDF
    We investigate the electronic structure of Ca1x_{1-x}Srx_xVO3_3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy-scales, namely the low energy-scale of thermal excitations (~kBTk_{B}T) and the high-energy scale related to Coulomb and other electronic interactions.Comment: 4 pages and 3 figures. Europhysics Letters (appearing

    Schottky barrier heights and interface chemistry in Ag, In, and Al overlayers on GaP(110)

    No full text
    We have carried out a study of the chemical reaction of silver, indium, and aluminium layers with cleaved GaP(110) surfaces using photoemission with synchrotron radiation. Core level photoelectron spectra show that silver and indium overlayers do not cause an interface reaction with GaP(110). The deposition of Al, on the other hand, leads to an extensive exchange reaction which also proceeds at low temperature, although influenced by changes in overlayer growth morphology. Surface band bending induced by the metallic overlayers was investigated as a function of deposition for n‐ and p‐type material. In contrast to earlier findings, almost identical Schottky barrier heights for In and Ag deposition are obtained, despite the large difference in work function between these two metals. Results for Al also suggest that a small range of pinning positions is responsible for the Schottky barrier heights for junctions of these metals with GaP(110). We find that large peak shifts due to a surface photovoltage induced by the photoemission light source affect the determination of the Schottky barrier heights. This and other possible reasons for the discrepancy with earlier work are discussed

    Krill availability in adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica

    Get PDF
    The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer-scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Ant-arctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth-integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history-driven adult krill migration rather than a resource-driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine-scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems

    A Subsurface Eddy Associated With a Submarine Canyon Increases Availability and Delivery of Simulated Antarctic Krill to Penguin Foraging Regions

    Get PDF
    The distribution of marine zooplankton depends on both ocean currents and swimming behavior. Many zooplankton perform diel vertical migration (DVM) between the surface and subsurface, which can have different current regimes. If concentration mechanisms, such as fronts or eddies, are present in the subsurface, they may impact zooplankton near-surface distributions when they migrate to near-surface waters. A subsurface, retentive eddy within Palmer Deep Canyon (PDC), a submarine canyon along the West Antarctic Peninsula (WAP), retains diurnal vertically migrating zooplankton in previous model simulations. Here, we tested the hypothesis that the presence of the PDC and its associated subsurface eddy increases the availability and delivery of simulated Antarctic krill to nearby penguin foraging regions with model simulations over a single austral summer. We found that the availability and delivery rates of simulated krill to penguin foraging areas adjacent to PDC were greater when the PDC was present compared to when PDC was absent, and when DVM was deepest. These results suggest that the eddy has potential to enhance krill availability to upper trophic level predators and suggests that retention may play a significant role in resource availability for predators in other similar systems along the WAP and in other systems with sustained subsurface eddies

    A primary breast cancer with distinct foci of estrogen receptor-alpha positive and negative cells derived from the same clonal origin as revealed by whole exome sequencing

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Background/purpose: Tumor heterogeneity is a now well-recognized phenomenon that can affect the classification, prognosis and treatment of human cancers. Heterogeneity is often described in primary breast cancers based upon histologic subtypes, hormone- and HER2-receptor status, and immunolabeling for various markers, which can be seen within a single tumor as mixed cellular populations, or as separate discrete foci. Experimental design/methods: Here, we present a case report of a patient’s primary breast cancer that had two separate but adjacent histologic components, one that was estrogen receptor (ER) positive, and the other ER negative. Each component was subjected to whole exome sequencing and compared for gene identity to determine clonal origin. Results: Using prior bioinformatic tools, we demonstrated that both the ER positive and negative components shared many variants, including passenger and driver alterations. Copy number variations also supported the two components were derived from a single common clone. Conclusions: These analyses strongly suggest that the two ER components of this patient’s breast cancer were derived from the same clonal origin. Our results have implications for the evolution of breast cancers with mixed histologies, and how they might be best managed for optimal therapy

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    Molecular and genetic targets within metastatic colorectal cancer and associated novel treatment advancements

    Get PDF
    Colorectal cancer results in the deaths of hundreds of thousands of patients worldwide each year, with incidence expected to rise over the next two decades. In the metastatic setting, cytotoxic therapy options remain limited, which is reflected in the meager improvement of patient survival rates. Therefore, focus has turned to the identification of the mutational composition inherent to colorectal cancers and development of therapeutic targeted agents. Herein, we review the most up to date systemic treatment strategies for metastatic colorectal cancer based on the actionable molecular alterations and genetic profiles of colorectal malignancies
    corecore