270 research outputs found

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* ∌\sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5

    Strong enhancement of d-wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon

    Full text link
    We study the hole binding energy and pairing correlations in the three-band Hubbard model coupled to an apical oxygen phonon, by exact diagonalization and constrained-path Monte Carlo simulations. In the physically relevant charge-transfer regime, we find that the hole binding energy is strongly enhanced by the electron-phonon interaction, which is due to a novel potential-energy-driven pairing mechanism involving reduction of both electronic potential energy and phonon related energy. The enhancement of hole binding energy, in combination with a phonon-induced increase of quasiparticle weight, leads to a dramatic enhancement of the long-range part of d-wave pairing correlations. Our results indicate that the apical oxygen phonon plays a significant role in the superconductivity of high-TcT_c cuprates.Comment: 5 pages, 5 figure

    Hubbard exciton revealed by time-domain optical spectroscopy

    Get PDF
    We use broadband ultra-fast pump-probe spectroscopy in the visible range to study the lowest excitations across the Mott-Hubbard gap in the orbitally ordered insulator YVO3. Separating thermal and non-thermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin-disorder can be used to quantify the kinetic energy gain of the excitons in the ferromagnetic phase.Comment: 5 pages and 6 figures, 9 pages and 12 figures with additional material

    An Integrated Approach To Recruiting And Retaining Appalachian Engineering Students

    Get PDF
    Recruiting and retaining Appalachian engineering students is difficult for a variety of ecological and cultural reasons. At West Virginia University an NSF STEP grant1* has allowed the development specific interventions to evolve from an ecological model we describe here. The interventions include web-based, realistic engineering design exercises linked to state and federal content standards and objectives; a week-long residential summer camp addressing social and academic challenges for rural and minority students; a full set of retention efforts including "rescue courses" targeting struggling college freshmen in early stages of academic difficulty coupled with required study labs to underscore time management and persistence skills early in a freshman's academic career. Process and impact measures suggest that this package of interventions is effective in building interest in engineering not only in high school teachers but in the high school students themselves. While freshman retention has improved remarkably to an all time high of 84%, we conclude that it may take longer than five years to establish among youth in Appalachia an "engineering identity" as a cultural norm. We discuss the key aspects of our 5 year NSF project along with findings and conclusions

    Evidence of reduced surface electron-phonon scattering in the conduction band of Bi_{2}Se_{3} by non-equilibrium ARPES

    Full text link
    The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the \emph{surface}. By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with different probing depths we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure

    Structural Performance-Based Design Optimisation of a Secondary Mirror for a Concentrated Solar Power (CSP) Plant

    Get PDF
    Concentrated Solar Power (CSP) plants use mirrors to reflect and concentrate sunlight onto a receiver, to heat a fluid and store thermal energy, at high temperature and energy density, to produce dispatchable heat and/or electricity. The secondary mirror is a critical component in the optical system of certain Solar Power Tower plants (SPT), as it redirects the concentrated sunlight from the primary mirror onto the receiver, which can be arranged at ground level. In this study, we propose a design optimisation for the secondary mirror of a CSP plant. The design optimisation method consists of two steps. The first step involves the use of the finite element simulation software Abaqus 2022 to analyse the structural performance of the secondary mirror under thermal loads and wind. The second step consists of the use of simulation results to identify the combination of design parameters and best performances, with respect to both design constraints and structural safety. This is carried out by developing an algorithm that selects those configurations which satisfy the constraints by using safety coefficients. The proposed optimisation method is applied to the design of a potential configuration of a secondary mirror for the beam-down of the CSP Magaldi STEMÂź technology, although the methodology can be extended to other components of CSP plants, such as primary mirrors and receivers, to further enhance the structural performance of these systems

    The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)

    Get PDF
    Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices, because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need of studying the spin texture of strongly spin-orbit coupled materials has recently promoted circular dichroic Angular Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our work reveals a large variation of the magnitude and sign of the dichroism. Interestingly, we find that the dichroic signal modulates differently for the three compounds and for the different spin-split states. These findings show a momentum and photon energy dependence for the cd-ARPES signals in the bulk Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our experiment indicates the important relation between the modulation of the dichroism and the phase differences between the wave-functions involved in the photoemission process. This phase difference can be due to initial or final state effects. In the former case the phase difference results in possible interference effects among the photo-electrons emitted from different atomic layers and characterized by entangled spin-orbital polarized bands. In the latter case the phase difference results from the relative phases of the expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure

    Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3\mathrm{Bi_{2}Se_{3}}

    Full text link
    The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on Bi2Se3\mathrm{Bi_{2}Se_{3}} reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.Comment: 5 pages and 4 figure

    A Noninvasive Test for Vesico-Ureteric Reflux in Children

    Get PDF
    Objective To report the development and testing of a device for the noninvasive diagnosis of vesico‐ureteric reflux (VUR) which avoids the need for urethral catheterization (currently required to reliably determine the presence of VUR), and which thus avoids the anxiety of parents and patients that causes many families to refuse such evaluation. Patients and methods Fifty‐four children (49 girls and five boys, mean age 7.2 years, range 4–14) previously evaluated as having VUR volunteered to participate; no child was symptomatic at the time of the study. Refluxing units were known to be present by voiding cysto‐urethrography (within 1 year, mean 7 months) in 45 and absent in 16. The device developed acquires electronically processed acoustic signals from the child during an observed urination. The signals are then analysed ‘off‐line’ to determine the presence or absence of VUR. The initial preparation for the test included: (i) a full bladder [at least 0.80 × {(2+age) ×30 mL}] measured by ultrasonography; and (ii) localization of the pelvi‐ureteric junction by ultrasonography to accurately place the device\u27s sensors on the child\u27s back. The children were then positioned at a commode after placing the sensors; the recording was started and continued until voiding occurred. The children were tested with the recording and analysis team unaware of the presence and/or degree of VUR. The first 47 studies were single‐kidney examinations and the remaining seven included simultaneous monitoring of both kidneys. Results Sixty‐one renal units were assessed and interpretable signals were obtained from 54 (89%). There were seven episodes of ‘system failure’ when no interpretable data were obtained. One unit with no VUR had a ‘reflux’ signal; in four kidneys, spontaneous (two) and postsurgical (two) resolution of reflux was predicted by the testing and subsequently verified by cyclic radionuclide cystography. Conclusions This noninvasive diagnostic technique detected VUR in 35 of 37 refluxing units and verified no reflux in 16 of 17 units without VUR. Further refinements may allow this technology to be used in all children with suspected VUR
    • 

    corecore