27 research outputs found
Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are nonessential for development
Recent studies suggest early (preimplantation) events might be important in the development of polarity in mammalian embryos. We report here lineage tracing experiments with green fluorescent protein showing that cells located either near to or opposite the polar body at the 8-cell stage of the mouse embryo retain their same relative positions in the blastocyst. Thus they come to lie on either end of an axis of symmetry of the blastocyst that has recently been shown to correlate with the anterior-posterior axis of the postimplantation embryo (see R. J. Weber, R. A. Pedersen, F. Wianny, M. J. Evans and M. Zernicka-Goetz (1999). Development 126, 5591-5598). The embryonic axes of the mouse can therefore be related to the position of the polar body at the 8-cell stage, and by implication, to the animal-vegetal axis of the zygote. However, we also show that chimeric embryos constructed from 2-cell stage blastomeres from which the animal or the vegetal poles have been removed can develop into normal blastocysts and become fertile adult mice. This is also true of chimeras composed of animal or vegetal pole cells derived through normal cleavage to the 8-cell stage. We discuss that although polarity of the postimplantation embryo can be traced back to the 8-cell stage and in turn to the organisation of the egg, it is not absolutely fixed by this time
Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/ Cxcr7 axis
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite
cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and
remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as
extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies
aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous
studies we showed that Sdf-1 (stromal derived factor ¡1) increased migration of stem cells and
their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the
expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study
we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1
receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary
myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the
cells of different migration and myogenic potential. We showed that Sdf-1 altered actin
organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-
Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the
transcription profile of genes encoding factors engaged in cells adhesion and migration. As the
result, cells such as primary myoblasts or embryonic stem cells, became characterized by more
effective migration when transplanted into regenerating muscle
Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene
The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of
satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to
promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional
Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied
mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells
under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic
factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells.
Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the
expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of
functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs
The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner
BACKGROUND: Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. METHODS: Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. RESULTS: We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. CONCLUSIONS: Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12015-022-10350-y
Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that
it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently
we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells.
In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells
modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also
positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be
executed by modulating the expression of positive cell cycle regulators, such as cyclin E
On the transition from the meiotic to mitotic cell cycle during early mouse development.
International audienceHere, we outline the mechanisms involved in the regulation of cell divisions during oocyte maturation and early cleavages of the mouse embryo. Our interest is focused on the regulation of meiotic M-phases and the first embryonic mitoses that are differently tuned and are characterized by specifically modified mechanisms, some of which have been recently identified. The transitions between the M-phases during this period of development, as well as associated changes in their regulation, are of key importance for both the meiotic maturation of oocytes and the further development of the mammalian embryo. The mouse is an excellent model for studies of the cell cycle during oogenesis and early development. Nevertheless, a number of molecular mechanisms described here were discovered or confirmed during the study of other species and apply also to other mammals including humans
Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes
Fertilization affects levels of cyclin B1 and M-phase promoting factor (MPF) activity in maturing and metaphase II mouse oocytes in two distinct ways. In metaphase II oocytes, it leads to a Ca2+-dependent, continuous degradation of cyclin B1 and inactivation of cyclin dependent kinase (CDC2A)–cyclin B1 complex (MPF). In this paper, we show that neither mono- nor polyspermic fertilization of prometaphase I and metaphase I oocytes triggered degradation of cyclin B1. However, polyspermic fertilization of prometaphase I oocytes led to a transient decrease in MPF activity that lasted for 2 h. The inactivation of MPF in polyspermic prometaphase I oocytes did not depend on the fertilization-induced increase in the cytoplasmic concentration of free Ca2+ ions, but was caused, at least in part, by dephosphorylation of CDC2A at threonine 161 (Thr161). We found that polyspermic fertilization did not affect glutathione levels in prometaphase I oocytes, and concluded that the decrease in MPF activity and dephosphorylation of CDC2A at Thr161 in polyspermic prometaphase I oocytes were not caused by a change in the redox status of the cell induced by an introduction of excessive amount of sperm protamines. Instead, we propose that inactivation of MPF activity in polyspermic maturing oocytes is caused by a change in nucleo-cytoplasmic ratio that leads to a ‘titration’ of kinases and phosphatases responsible for keeping MPF in an active state. This idea is supported by the finding that oocytes fused with thymocytes rather than spermatozoa also showed a transient decrease in MPF activity
miRNA-126a plays important role in myoblast and endothelial cell interaction
Abstract Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis