28 research outputs found

    Improving the co and ch4 gas sensor response at room temperature of alpha-fe2o3(0001) epitaxial thin films grown on srtio3(111) incorporating au(111) islands

    Get PDF
    In this work, the functional character of complex -Fe2O3(0001)/SrTiO3(111) and Au(111) islands/ -Fe2O3(0001)/SrTiO3(111) heterostructures has been proven as gas sensors at room temperature. Epitaxial Au islands and -Fe2O3 thin film are grown by pulsed laser deposition on SrTiO3(111) substrates. Intrinsic parameters such as the composition, particle size and epitaxial character are investigated for their influence on the gas sensing response. Both Au and -Fe2O3 layer show an island-type growth with an average particle size of 40 and 62 nm, respectively. The epitaxial and incommensurate growth is evidenced, confirming a rotation of 30 between the in-plane crystallographic axes of -Fe2O3(0001) structure and those of SrTiO3(111) substrate and between the in-plane crystallographic axes of Au(111) and those of -Fe2O3(0001) structure. -Fe2O3 is the only phase of iron oxide identified before and after its functionalization with Au nanoparticles. In addition, its structural characteristics are also preserved after Au deposition, with minor changes at short-range order. Conductance measurements of Au(111)/ -Fe2O3(0001)/SrTiO3(111) system show that the incorporation of epitaxial Au islands on top of the -Fe2O3(0001) layer induces an enhancement of the gas-sensing activity of around 25% under CO and 35% under CH4 gas exposure, in comparison to a bare -Fe2O3(0001) layer grown on SrTiO3(111) substrates. In addition, the response of the heterostructures to CO gas exposure is around 5–10% higher than to CH4 gas in each case.This work has been supported by the Ministerio Español de Ciencia e Innovación (MICINN) and the Consejo Superior de Investigaciones Cientificas (CSIC) through the projects PIE-2010-OE-013- 200014, PIE 2021-60-E-030 and RTI2018-095303-A-C52. The ESRF, MICINN and CSIC are acknowledged for the provision of synchrotron radiation facilities. A.S. acknowledges financial support from Comunidad de Madrid for an “Atracción de Talento Investigador” Contract (2017-t2/IND5395)

    Monolithic All-Solid-State High-Voltage Li-Metal Thin-Film Rechargeable Battery

    Get PDF
    The substitution of an organic liquid electrolyte with lithium-conducting solid materials is a promising approach to overcome the limitations associated with conventional lithium-ion batteries. These constraints include a reduced electrochemical stability window, high toxicity, flammability, and the formation of lithium dendrites. In this way, all-solid-state batteries present themselves as ideal candidates for improving energy density, environmental friendliness, and safety. In particular, all-solid-state configurations allow the introduction of compact, lightweight, high-energy-density batteries, suitable for low-power applications, known as thin-film batteries. Moreover, solid electrolytes typically offer wide electrochemical stability windows, enabling the integration of high-voltage cathodes and permitting the fabrication of higher-energy-density batteries. A high-voltage, all-solid-state lithium-ion thin-film battery composed of LiNi0.5Mn1.5O4 cathode, a LiPON solid electrolyte, and a lithium metal anode has been deposited layer by layer on low-cost stainless-steel current collector substrates. The structural and electrochemical properties of each electroactive component of the battery had been analyzed separately prior to the full cell implementation. In addition to a study of the internal solid–solid interface, comparing them was done with two similar cells assembled using conventional lithium foil, one with thin-film solid electrolyte and another one with thin-film solid electrolyte plus a droplet of LP30 liquid electrolyte. The thin-film all-solid state cell developed in this work delivered 80.5 mAh g–1 in the first cycle at C/20 and after a C-rate test of 25 cycles at C/10, C/5, C/2, and 1C and stabilized its capacity at around 70 mAh g–1 for another 12 cycles prior to the start of its degradation. This cell reached gravimetric and volumetric energy densities of 333 Wh kg–1 and 1,212 Wh l–1, respectively. Overall, this cell showed a better performance than its counterparts assembled with Li foil, highlighting the importance of the battery interface control.The authors acknowledge the financial support from European H2020 project MONBASA (Monolithic Batteries for Spaceship Applications, grant no. 687561) and Basque Government through Elkartek 2017 program with the project Elkartek CICe2017-L4

    Understanding enhanced charge storage of phosphorus-functionalized graphene in aqueous acidic electrolytes

    Get PDF
    The mechanisms behind enhanced charge storage of P-functionalized carbons are unraveled for the first time using non-porous graphene oxide treated with phosphoric acid and annealed at either 400 or 800 degrees C. The electrochemical study in 1 M H2SO4 reveals that phosphorus groups boost charge storage and electrochemical stability, with more effect for the higher annealing temperature. Annealing at 800 degrees C also leads to the material withstanding 60,000 charge-discharge cycles with no capacitance loss at 1.5 V. The improvement in the electrochemical performance is shown to be mainly governed by the change in surface chemistry comprehensively studied with NMR, FTIR and XPS characterization techniques. The collective analysis of electrochemical response and surface chemistry demonstrates that enhanced charge storage by phosphorus-functionalized graphene materials is made possible due to the following synergistic mechanisms: i) non-Faradaic charging; ii) nascent hydrogen storage in the interlayer; iii) benzoquinoneto-hydroquinone redox processes; iv) phosphate-to-phosphonate like transformation. From the practical perspective, the stored charge can be boosted due to the higher capacitance upon prior electrochemical activation in the vicinity of oxygen evolution potential and the wider usable electrochemical window enabled by phosphorus-related groups. (C) 2020 The Author(s). Published by Elsevier Ltd.The authors thank the European Union (Graphene Flagship, Core 2, Grant number 785219) and the Spanish Ministry of Science and Innovation (MICINN/FEDER) (RTI2018-096199-B-I00) for the financial support of this work. J. L. G. U. is very thankful to the Spanish Ministry of Education, Science and Universities (MICINN) for the FPU grant (16/03498). We also want to acknowledge the company GRAPHENEA for supplying the graphene oxide used in this work and Yan Zhang from CIC Energigune for collecting FTIR spectra

    Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries

    Get PDF
    Gel polymer electrolytes (GPEs) are emerging as suitable candidates for high-performing lithium-sulfur batteries (LSBs) due to their excellent performance and improved safety. Within them, poly(vinylidene difluoride) (PVdF) and its derivatives have been widely used as polymer hosts due to their ideal mechanical and electrochemical properties. However, their poor stability with lithium metal (Li0) anode has been identified as their main drawback. Here, the stability of two PVdF-based GPEs with Li0 and their application in LSBs is studied. PVdF-based GPEs undergo a dehydrofluorination process upon contact with the Li0. This process results in the formation of a LiF-rich solid electrolyte interphase that provides high stability during galvanostatic cycling. Nevertheless, despite their outstanding initial discharge, both GPEs show an unsuitable battery performance characterized by a capacity drop, ascribed to the loss of the lithium polysulfides and their interaction with the dehydrofluorinated polymer host. Through the introduction of an intriguing lithium salt (lithium nitrate) in the electrolyte, a significant improvement is achieved delivering higher capacity retention. Apart from providing a detailed study of the hitherto poorly characterized interaction process between PVdF-based GPEs and the Li0, this study demonstrates the need for an anode protection process to use this type of electrolytes in LSBs.This work was funded by the European Union’s Horizon 2020 research and innovation program Graphene Flagship Core Project 3 (GrapheneCore3) under grant agreement 881603. The project was also supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and the European Regional Development Fund (ERDF) (RTI2018-098301–B-I00)

    Tuning topological defects in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy

    Get PDF
    Resumen del póster presentado a la VIII Edición de la Reunión Bienal del Grupo Especializado de Física del Estado Sólido de la Real Sociedad Española de Física celebrada del en Ciudad Real del 22 al 24 de enero de 2014.Peer Reviewe

    Educating in antimicrobial resistance awareness: adaptation of the Small World Initiative program to service-learning.

    Get PDF
    The Small World Initiative (SWI) and Tiny Earth are a consolidated and successful education programs rooted in the USA that tackle the antibiotic crisis by a crowdsourcing strategy. Based on active learning, it challenges young students to discover novel bioactive-producing microorganisms from environmental soil samples. Besides its pedagogical efficiency to impart microbiology content in academic curricula, SWI promotes vocations in research and development in Experimental Sciences and, at the same time, disseminates the antibiotic awareness guidelines of the World Health Organization. We have adapted the SWI program to the Spanish academic environment by a pioneering hierarchic strategy based on service-learning that involves two education levels (higher education and high school) with different degrees of responsibility. Throughout the academic year, 23 SWI teams, each consisting of 3-7 undergraduate students led by one faculty member, coordinated off-campus programs in 22 local high schools, involving 597 high school students as researchers. Post-survey-based evaluation of the program reveals a satisfactory achievement of goals: acquiring scientific abilities and general or personal competences by university students, as well as promoting academic decisions to inspire vocations for science- and technology-oriented degrees in younger students, and successfully communicating scientific culture in antimicrobial resistance to a young stratum of society
    corecore