75 research outputs found

    Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition

    Get PDF
    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future

    Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes

    Get PDF
    Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre–MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult transition suggests that these post-embryonic melanocytes develop from the same adult MSC population. Lastly, that kitla overexpression can recruit the MSC to develop excess melanocytes raises the possibility that Kit signaling may be involved in MSC recruitment during regeneration

    Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish

    Get PDF
    ) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1.Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents

    Discovery and Characterization of Novel Vascular and Hematopoietic Genes Downstream of Etsrp in Zebrafish

    Get PDF
    The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development

    Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult hematopoietic stem cells

    Get PDF
    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs

    Gene regulatory networks governing the generation and regeneration of blood

    No full text
    Blood is an example of a highly regenerative tissue and its regeneration depends on the presence of stem cells residing in the bone marrow in humans. A better understanding of how these stem cells are programmed would benefit their use in clinical practice and shed light on the mechanisms by which the unique properties of stem cells are established. Our approach is to delineate the gene regulatory networks (GRNs) that specify these cells during their development in the embryo, and we use the amphibian experimental model because a wealth of evidence shows that the mechanisms used are conserved in mammals including humans. Blood stem cells are made during the intraembryonic wave of hematopoiesis during embryonic development where they emerge from endothelial precursors in the floor of the dorsal aorta (DA). These cells are derived from lateral plate mesoderm and so we have focused on the subset of cells in the lateral plate mesoderm fated to become blood and endothelium known as definitive hemangioblasts. We have found that their programming results from the activities of vascular endothelial growth factor A (VEGFA) and bone morphogenetic protein (BMP) signaling and the inhibition by miRNA of transforming growth factor beta signaling. VEGFA is first generated in the somites adjacent to the lateral plate mesoderm, and one of the responses of the lateral plate mesoderm is to activate endogenous VEGFA expression. BMP has multiple inputs into the programming of these cells via the activation of the transcription factor (TF), Gata2, and of the VEGFA receptor. These actions culminate in the expression of the leukemia-associated TF, Scl/Tal1, which is essential for blood fate specification. The activity of VEGFA in driving endothelial development resides in the small isoform, but the medium and large isoforms are required to initiate the blood stem cell program in the floor of the DA. The expression of the small isoform is dependent on the blood TF with leukemia connections, Tel1/Etv6, whereas the larger isoforms depend on another transcription-associated factor with leukemia connections, Eto2, raising the possibility that the regulation of VEGFA expression may be the mode of action of these leukemic factors. The action of Tel1/Etv6 in directly activating VEGFA expression in the somites was unexpected because this TF had only been reported to repress transcription. Using chromatin immunoprecipitation technology, we were able to show that Tel1/Etv6 does indeed work by repressing the expression of a VEGFA repressor, FoxC3, but it also acts directly to activate VEGFA expression, working together with Klf4. Finally, we have also looked at the mesodermal population that gives rise to the earlier waves of hematopoiesis, which do not generate a stem cell. We find significant differences including differential use of TFs of the E-Twenty-Six (ETS) family. In conclusion, we have elucidated the GRN responsible for preparing the lateral mesoderm for blood stem cell production

    The embryonic origins and genetic programming of emerging haematopoietic stem cells

    No full text
    Haematopoietic stem cells (HSCs) emerge from the haemogenic endothelium (HE) localised in the ventral wall of the embryonic dorsal aorta (DA). The HE generates HSCs through a process known as the endothelial to haematopoietic transition (EHT), which has been visualised in live embryos and is currently under intense study. However, EHT is the culmination of multiple programming events, which are as yet poorly understood, that take place before the specification of HE. A number of haematopoietic precursor cells have been described before the emergence of definitive HSCs, but only one haematovascular progenitor, the definitive haemangioblast (DH), gives rise to the DA, HE and HSCs. DHs emerge in the lateral plate mesoderm (LPM) and have a distinct origin and genetic programme compared to other, previously described haematovascular progenitors. Although DHs have so far only been established in Xenopus embryos, evidence for their existence in the LPM of mouse and chicken embryos is discussed here. We also review the current knowledge of the origins, lineage relationships, genetic programming, and differentiation of the DHs that leads to the generation of HSCs. Importantly, we discuss the significance of the gene regulatory network (GRN) that controls the programming of DHs, a better understanding of which may aid in the establishment of protocols for the de novo generation of HSCs in vitro. This article is protected by copyright. All rights reserved

    The embryonic origins and genetic programming of emerging haematopoietic stem cells

    No full text
    Haematopoietic stem cells (HSCs) emerge from the haemogenic endothelium (HE) localised in the ventral wall of the embryonic dorsal aorta (DA). The HE generates HSCs through a process known as the endothelial to haematopoietic transition (EHT), which has been visualised in live embryos and is currently under intense study. However, EHT is the culmination of multiple programming events, which are as yet poorly understood, that take place before the specification of HE. A number of haematopoietic precursor cells have been described before the emergence of definitive HSCs, but only one haematovascular progenitor, the definitive haemangioblast (DH), gives rise to the DA, HE and HSCs. DHs emerge in the lateral plate mesoderm (LPM) and have a distinct origin and genetic programme compared to other, previously described haematovascular progenitors. Although DHs have so far only been established in Xenopus embryos, evidence for their existence in the LPM of mouse and chicken embryos is discussed here. We also review the current knowledge of the origins, lineage relationships, genetic programming, and differentiation of the DHs that leads to the generation of HSCs. Importantly, we discuss the significance of the gene regulatory network (GRN) that controls the programming of DHs, a better understanding of which may aid in the establishment of protocols for the de novo generation of HSCs in vitro. This article is protected by copyright. All rights reserved
    corecore