1,258 research outputs found
The boundary value problem for discrete analytic functions
This paper is on further development of discrete complex analysis introduced
by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying
in the complex plane and having quadrilateral faces. A function on the vertices
is called discrete analytic, if for each face the difference quotients along
the two diagonals are equal.
We prove that the Dirichlet boundary value problem for the real part of a
discrete analytic function has a unique solution. In the case when each face
has orthogonal diagonals we prove that this solution uniformly converges to a
harmonic function in the scaling limit. This solves a problem of S. Smirnov
from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L.
Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G.
Ciarlet-P.-A. Raviart for rhombic lattices.
In particular, our result implies uniform convergence of the finite element
method on Delaunay triangulations. This solves a problem of A. Bobenko from
2011. The methodology is based on energy estimates inspired by
alternating-current network theory.Comment: 22 pages, 6 figures. Several changes: Theorem 1.2 generalized,
several assertions added, minor correction in the proofs of Lemma 2.5, 3.3,
Example 3.6, Corollary 5.
Finite element methods for surface PDEs
In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples
A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation
Compressible Mooney-Rivlin theory has been used to model hyperelastic solids,
such as rubber and porous polymers, and more recently for the modeling of soft
tissues for biomedical tissues, undergoing large elastic deformations. We
propose a solution procedure for Lagrangian finite element discretization of a
static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the
case in which the boundary condition is a large prescribed deformation, so that
mesh tangling becomes an obstacle for straightforward algorithms. Our solution
procedure involves a largely geometric procedure to untangle the mesh: solution
of a sequence of linear systems to obtain initial guesses for interior nodal
positions for which no element is inverted. After the mesh is untangled, we
take Newton iterations to converge to a mechanical equilibrium. The Newton
iterations are safeguarded by a line search similar to one used in
optimization. Our computational results indicate that the algorithm is up to 70
times faster than a straightforward Newton continuation procedure and is also
more robust (i.e., able to tolerate much larger deformations). For a few
extremely large deformations, the deformed mesh could only be computed through
the use of an expensive Newton continuation method while using a tight
convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in
Engineering with Computers on 9 September 2010. Accepted for publication on
20 May 2011. Published online 11 June 2011. The final publication is
available at http://www.springerlink.co
Relativistic Elasticity
Relativistic elasticity on an arbitrary spacetime is formulated as a
Lagrangian field theory which is covariant under spacetime diffeomorphisms.
This theory is the relativistic version of classical elasticity in the
hyperelastic, materially frame-indifferent case and, on Minkowski space,
reduces to the latter in the non-relativistic limit . The field equations are
cast into a first -- order symmetric hyperbolic system. As a consequence one
obtains local--in--time existence and uniqueness theorems under various
circumstances.Comment: 23 page
Characterising a universal cloning machine by maximum-likelihood estimation
We apply a general method for the estimation of completely positive maps to
the 1-to-2 universal covariant cloning machine. The method is based on the
maximum-likelihood principle, and makes use of random input states, along with
random projective measurements on the output clones. The downhill simplex
algorithm is applied for the maximisation of the likelihood functional.Comment: 5 pages, 2 figure
The density functional theory of classical fluids revisited
We reconsider the density functional theory of nonuniform classical fluids
from the point of view of convex analysis. From the observation that the
logarithm of the grand-partition function is a convex
functional of the external potential it is shown that the Kohn-Sham free
energy is a convex functional of the density . and constitute a pair of Legendre transforms and each
of these functionals can therefore be obtained as the solution of a variational
principle. The convexity ensures the unicity of the solution in both cases. The
variational principle which gives as the maximum of a
functional of is precisely that considered in the density functional
theory while the dual principle, which gives as the maximum of
a functional of seems to be a new result.Comment: 10 page
Discretization of variational regularization in Banach spaces
Consider a nonlinear ill-posed operator equation where is
defined on a Banach space . In general, for solving this equation
numerically, a finite dimensional approximation of and an approximation of
are required. Moreover, in general the given data \yd of are noisy.
In this paper we analyze finite dimensional variational regularization, which
takes into account operator approximations and noisy data: We show
(semi-)convergence of the regularized solution of the finite dimensional
problems and establish convergence rates in terms of Bregman distances under
appropriate sourcewise representation of a solution of the equation. The more
involved case of regularization in nonseparable Banach spaces is discussed in
detail. In particular we consider the space of finite total variation
functions, the space of functions of finite bounded deformation, and the
--space
A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole
The description of extreme-mass-ratio binary systems in the inspiral phase is
a challenging problem in gravitational wave physics with significant relevance
for the space interferometer LISA. The main difficulty lies in the evaluation
of the effects of the small body's gravitational field on itself. To that end,
an accurate computation of the perturbations produced by the small body with
respect the background geometry of the large object, a massive black hole, is
required. In this paper we present a new computational approach based on Finite
Element Methods to solve the master equations describing perturbations of
non-rotating black holes due to an orbiting point-like object. The numerical
computations are carried out in the time domain by using evolution algorithms
for wave-type equations. We show the accuracy of the method by comparing our
calculations with previous results in the literature. Finally, we discuss the
relevance of this method for achieving accurate descriptions of
extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure
Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains
We explore the connection between fractional order partial differential
equations in two or more spatial dimensions with boundary integral operators to
develop techniques that enable one to efficiently tackle the integral
fractional Laplacian. In particular, we develop techniques for the treatment of
the dense stiffness matrix including the computation of the entries, the
efficient assembly and storage of a sparse approximation and the efficient
solution of the resulting equations. The main idea consists of generalising
proven techniques for the treatment of boundary integral equations to general
fractional orders. Importantly, the approximation does not make any strong
assumptions on the shape of the underlying domain and does not rely on any
special structure of the matrix that could be exploited by fast transforms. We
demonstrate the flexibility and performance of this approach in a couple of
two-dimensional numerical examples
Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates
In this paper we show the existence of global minimizers for the
geometrically exact, non-linear equations of elastic plates, in the framework
of the general 6-parametric shell theory. A characteristic feature of this
model for shells is the appearance of two independent kinematic fields: the
translation vector field and the rotation tensor field (representing in total 6
independent scalar kinematic variables). For isotropic plates, we prove the
existence theorem by applying the direct methods of the calculus of variations.
Then, we generalize our existence result to the case of anisotropic plates. We
also present a detailed comparison with a previously established Cosserat plate
model.Comment: 19 pages, 1 figur
- …
