1,258 research outputs found

    The boundary value problem for discrete analytic functions

    Full text link
    This paper is on further development of discrete complex analysis introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal. We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S. Smirnov from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L. Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G. Ciarlet-P.-A. Raviart for rhombic lattices. In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A. Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory.Comment: 22 pages, 6 figures. Several changes: Theorem 1.2 generalized, several assertions added, minor correction in the proofs of Lemma 2.5, 3.3, Example 3.6, Corollary 5.

    Finite element methods for surface PDEs

    Get PDF
    In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples

    A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation

    Full text link
    Compressible Mooney-Rivlin theory has been used to model hyperelastic solids, such as rubber and porous polymers, and more recently for the modeling of soft tissues for biomedical tissues, undergoing large elastic deformations. We propose a solution procedure for Lagrangian finite element discretization of a static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the case in which the boundary condition is a large prescribed deformation, so that mesh tangling becomes an obstacle for straightforward algorithms. Our solution procedure involves a largely geometric procedure to untangle the mesh: solution of a sequence of linear systems to obtain initial guesses for interior nodal positions for which no element is inverted. After the mesh is untangled, we take Newton iterations to converge to a mechanical equilibrium. The Newton iterations are safeguarded by a line search similar to one used in optimization. Our computational results indicate that the algorithm is up to 70 times faster than a straightforward Newton continuation procedure and is also more robust (i.e., able to tolerate much larger deformations). For a few extremely large deformations, the deformed mesh could only be computed through the use of an expensive Newton continuation method while using a tight convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in Engineering with Computers on 9 September 2010. Accepted for publication on 20 May 2011. Published online 11 June 2011. The final publication is available at http://www.springerlink.co

    Relativistic Elasticity

    Get PDF
    Relativistic elasticity on an arbitrary spacetime is formulated as a Lagrangian field theory which is covariant under spacetime diffeomorphisms. This theory is the relativistic version of classical elasticity in the hyperelastic, materially frame-indifferent case and, on Minkowski space, reduces to the latter in the non-relativistic limit . The field equations are cast into a first -- order symmetric hyperbolic system. As a consequence one obtains local--in--time existence and uniqueness theorems under various circumstances.Comment: 23 page

    Characterising a universal cloning machine by maximum-likelihood estimation

    Get PDF
    We apply a general method for the estimation of completely positive maps to the 1-to-2 universal covariant cloning machine. The method is based on the maximum-likelihood principle, and makes use of random input states, along with random projective measurements on the output clones. The downhill simplex algorithm is applied for the maximisation of the likelihood functional.Comment: 5 pages, 2 figure

    The density functional theory of classical fluids revisited

    Full text link
    We reconsider the density functional theory of nonuniform classical fluids from the point of view of convex analysis. From the observation that the logarithm of the grand-partition function logΞ[ϕ]\log \Xi [\phi] is a convex functional of the external potential ϕ\phi it is shown that the Kohn-Sham free energy A[ρ]{\cal A}[\rho] is a convex functional of the density ρ\rho. logΞ[ϕ]\log \Xi [\phi] and A[ρ]{\cal A}[\rho] constitute a pair of Legendre transforms and each of these functionals can therefore be obtained as the solution of a variational principle. The convexity ensures the unicity of the solution in both cases. The variational principle which gives logΞ[ϕ]\log \Xi [\phi] as the maximum of a functional of ρ\rho is precisely that considered in the density functional theory while the dual principle, which gives A[ρ]{\cal A}[\rho] as the maximum of a functional of ϕ\phi seems to be a new result.Comment: 10 page

    Discretization of variational regularization in Banach spaces

    Full text link
    Consider a nonlinear ill-posed operator equation F(u)=yF(u)=y where FF is defined on a Banach space XX. In general, for solving this equation numerically, a finite dimensional approximation of XX and an approximation of FF are required. Moreover, in general the given data \yd of yy are noisy. In this paper we analyze finite dimensional variational regularization, which takes into account operator approximations and noisy data: We show (semi-)convergence of the regularized solution of the finite dimensional problems and establish convergence rates in terms of Bregman distances under appropriate sourcewise representation of a solution of the equation. The more involved case of regularization in nonseparable Banach spaces is discussed in detail. In particular we consider the space of finite total variation functions, the space of functions of finite bounded deformation, and the LL^\infty--space

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

    Full text link
    We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur
    corecore