552 research outputs found
Real time plasma equilibrium reconstruction in a Tokamak
The problem of equilibrium of a plasma in a Tokamak is a free boundary
problemdescribed by the Grad-Shafranov equation in axisymmetric configurations.
The right hand side of this equation is a non linear source, which represents
the toroidal component of the plasma current density. This paper deals with the
real time identification of this non linear source from experimental
measurements. The proposed method is based on a fixed point algorithm, a finite
element resolution, a reduced basis method and a least-square optimization
formulation
A simplicial gauge theory
We provide an action for gauge theories discretized on simplicial meshes,
inspired by finite element methods. The action is discretely gauge invariant
and we give a proof of consistency. A discrete Noether's theorem that can be
applied to our setting, is also proved.Comment: 24 pages. v2: New version includes a longer introduction and a
discrete Noether's theorem. v3: Section 4 on Noether's theorem has been
expanded with Proposition 8, section 2 has been expanded with a paragraph on
standard LGT. v4: Thorough revision with new introduction and more background
materia
Background-Independence
Intuitively speaking, a classical field theory is background-independent if
the structure required to make sense of its equations is itself subject to
dynamical evolution, rather than being imposed ab initio. The aim of this paper
is to provide an explication of this intuitive notion. Background-independence
is not a not formal property of theories: the question whether a theory is
background-independent depends upon how the theory is interpreted. Under the
approach proposed here, a theory is fully background-independent relative to an
interpretation if each physical possibility corresponds to a distinct spacetime
geometry; and it falls short of full background-independence to the extent that
this condition fails.Comment: Forthcoming in General Relativity and Gravitatio
Numerical approximation of the generalized regularized long wave equation using Petrov–Galerkin finite element method
The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion-acoustic and magnetohydro dynamic waves in plasma,nonlinear transverse waves in shallow water and phonon packets in nonlinear crystals. This paper aims to develop andanalyze a powerful numerical scheme for the nonlinear GRLWequation by Petrov–Galerkin method in which the elementshape functions are cubic and weight functions are quadratic B-splines. The proposed method is implemented to three ref-erence problems involving propagation of the single solitarywave, interaction of two solitary waves and evolution of solitons with the Maxwellian initial condition. The variational for-mulation and semi-discrete Galerkin scheme of the equation are firstly constituted. We estimate rate of convergence of such an approximation. Using Fourier stability analysis of thelinearized scheme we show that the scheme is uncondition-ally stable. To verify practicality and robustness of the new scheme error norms L2, L∞ and three invariants I1, I2,and I3 are calculated. The computed numerical results are compared with other published results and confirmed to be precise and effective
A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation
Compressible Mooney-Rivlin theory has been used to model hyperelastic solids,
such as rubber and porous polymers, and more recently for the modeling of soft
tissues for biomedical tissues, undergoing large elastic deformations. We
propose a solution procedure for Lagrangian finite element discretization of a
static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the
case in which the boundary condition is a large prescribed deformation, so that
mesh tangling becomes an obstacle for straightforward algorithms. Our solution
procedure involves a largely geometric procedure to untangle the mesh: solution
of a sequence of linear systems to obtain initial guesses for interior nodal
positions for which no element is inverted. After the mesh is untangled, we
take Newton iterations to converge to a mechanical equilibrium. The Newton
iterations are safeguarded by a line search similar to one used in
optimization. Our computational results indicate that the algorithm is up to 70
times faster than a straightforward Newton continuation procedure and is also
more robust (i.e., able to tolerate much larger deformations). For a few
extremely large deformations, the deformed mesh could only be computed through
the use of an expensive Newton continuation method while using a tight
convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in
Engineering with Computers on 9 September 2010. Accepted for publication on
20 May 2011. Published online 11 June 2011. The final publication is
available at http://www.springerlink.co
Bivariate spline interpolation with optimal approximation order
Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181
Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions
We prove strong convergence of conforming finite element approximations to
the stationary Joule heating problem with mixed boundary conditions on
Lipschitz domains in three spatial dimensions. We show optimal global
regularity estimates on creased domains and prove a priori and a posteriori
bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error
analysis, a priori error analysis, finite element metho
Characterising a universal cloning machine by maximum-likelihood estimation
We apply a general method for the estimation of completely positive maps to
the 1-to-2 universal covariant cloning machine. The method is based on the
maximum-likelihood principle, and makes use of random input states, along with
random projective measurements on the output clones. The downhill simplex
algorithm is applied for the maximisation of the likelihood functional.Comment: 5 pages, 2 figure
Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations
The Navier--Stokes equations are commonly used to model and to simulate flow
phenomena. We introduce the basic equations and discuss the standard methods
for the spatial and temporal discretization. We analyse the semi-discrete
equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index
and quantify the numerical difficulties in the fully discrete schemes, that are
induced by the strangeness of the system. By analyzing the Kronecker index of
the difference-algebraic equations, that represent commonly and successfully
used time stepping schemes for the Navier--Stokes equations, we show that those
time-integration schemes factually remove the strangeness. The theoretical
considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909,
https://doi.org/10.5281/zenodo.99890
- …