121 research outputs found

    Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    Get PDF
    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy

    Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells

    Get PDF
    BACKGROUND: The human organic cation transporter-1 (OCT-1) is the primary active protein for imatinib uptake into target BCR-ABL-positive cells. Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used by chronic myeloid leukaemia (CML) patients on imatinib to manage musculoskeletal complaints. METHODS: Here we investigated the impact of NSAIDs on functional activity of the OCT-1 (OCT-1 activity; OA) in CML cells. RESULTS: Although ten of twelve NSAIDs tested had no significant impact on OA (P>0.05), we observed increased OA (27% increase in K562; 22% increase in KU812 cells, P<0.05) and reduced IC50(imatinib) when treated with diclofenac. Co-incubation with imatinib and diclofenac resulted in a significantly lower viable cell number compared with imatinib alone. In contrast, ibuprofen led to a significant decrease in OA, an increase in IC50(imatinib) and thus reduced the cytotoxicity of imatinib. In primary CML samples, diclofenac significantly increased OA, particularly in patients with low OA (<4 ng per 200 000 cells), and significantly decreased IC50(imatinib). Ibuprofen induced significant decreases in OA in CML samples and healthy donors. CONCLUSION: On the basis of the expected impact of these two drugs on OA, ibuprofen should be avoided in combination with imatinib. Further studies are warranted regarding the potential benefit of diclofenac to improve OA in a clinical setting.J. Wang, T.P. Hughes, C.H. Kok, V.A. Saunders, A. Frede, K. Groot-Obbink, M. Osborn, A.A. Somogyi, R.J. D’Andrea and D.L. Whit

    The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs

    Get PDF
    Drug transporters are recognized as key players in the processes of drug absorption, distribution, metabolism, and elimination. The localization of uptake and efflux transporters in organs responsible for drug biotransformation and excretion gives transporter proteins a unique gatekeeper function in controlling drug access to metabolizing enzymes and excretory pathways. This review seeks to discuss the influence intestinal and hepatic drug transporters have on pharmacokinetic parameters, including bioavailability, exposure, clearance, volume of distribution, and half-life, for orally dosed drugs. This review also describes in detail the Biopharmaceutics Drug Disposition Classification System (BDDCS) and explains how many of the effects drug transporters exert on oral drug pharmacokinetic parameters can be predicted by this classification scheme

    Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys

    Get PDF
    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys

    [Growth factors and oncogenes in development and carcinogenesis. Role of the epidermal growth factor system]

    No full text
    The processes of cellular proliferation and progressive acquisition of a specialized phenotype show a remarkable degree of coordination that involves both intracellular programming and intercellular communication. One of the major incentives for studying factors that regulate the processes of cellular proliferation and differentiation is the recognition of their potential contribution to tumorigenesis. In normal cells, stimulatory and inhibitory events are believed to be under the control of growth factors and growth inhibitory factors, which are known to be protooncogene products. Growth regulatory mechanisms usually involve the binding of a growth factor to a specific receptor on the cell surface, which then through an intracellular biochemical cascade leads to cell division. The cell regulation pathways initiated by growth factors may be subverted at several distinct levels in cancer cells. Studies of oncogenes have shown that they may function as abnormal growth factors or abnormal receptors, induce expression of potential signal regulators or encode proteins which modulate gene transcription. The purpose of the present paper is to examine the role of growth factors, growth factor receptors and intracellular proteins involved in signal transduction (with particular regard to the epidermal growth factor receptor system) in the control of normal growth and differentiation, and their contribution to transformation and tumorigenesis. We also review the classical theories of neoplasia and various other models. Chemical carcinogenesis and Vogelstein-Lane model are presented
    corecore