5 research outputs found
Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies
Immunologic and neuroinflammatory pathways have been found to play a major role in the pathogenesis of many neurological disorders such as epilepsy, proposing the use of novel therapeutic strategies. In the era of personalized medicine and in the face of the exhaustion of anti-seizure therapeutic resources, it is worth looking at the current or future possibilities that neuroimmunomodulator or anti-inflammatory therapy can offer us in the management of patients with epilepsy. For this reason, we performed a narrative review on the recent advances on the basic epileptogenic mechanisms related to the activation of immunity or neuroinflammation with special attention to current and future opportunities for novel treatments in epilepsy. Neuroinflammation can be considered a universal phenomenon and occurs in structural, infectious, post-traumatic, autoimmune, or even genetically based epilepsies. The emerging research developed in recent years has allowed us to identify the main molecular pathways involved in these processes. These molecular pathways could constitute future therapeutic targets for epilepsy. Different drugs current or in development have demonstrated their capacity to inhibit or modulate molecular pathways involved in the immunologic or neuroinflammatory mechanisms described in epilepsy. Some of them should be tested in the future as possible antiepileptic drugThis research was funded by Andalusian Network of Clinical and Translational Research in Neurology (Neuro-RECA) of the Consejería de Salud y Familias de la Junta de Andalucía (Code: RIC-0111-2019). Partial funding for open access charge: Universidad de Málag
A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis
A central role for neuroinflammation in epileptogenesis has recently been suggested by several investigations. This systematic review explores the role of inflammatory mediators in epileptogenesis, its association with seizure severity, and its correlation with drug-resistant epilepsy (DRE). The study analysed articles published in JCR journals from 2019 to 2024. The search strategy comprised the MESH, free terms of “Neuroinflammation”, and selective searches for the following single biomarkers that had previously been selected from the relevant literature: “High mobility group box 1/HMGB1”, “Toll-Like-Receptor 4/TLR-4”, “Interleukin-1/IL-1”, “Interleukin-6/IL-6”, “Transforming growth factor beta/TGF-β”, and “Tumour necrosis factor-alpha/TNF-α”. These queries were all combined with the MESH terms “Epileptogenesis” and “Epilepsy”. We found 243 articles related to epileptogenesis and neuroinflammation, with 356 articles from selective searches by biomarker type. After eliminating duplicates, 324 articles were evaluated, with 272 excluded and 55 evaluated by the authors. A total of 21 articles were included in the qualitative evaluation, including 18 case–control studies, 2 case series, and 1 prospective study. As conclusion, this systematic review provides acceptable support for five biomarkers, including TNF-α and some of its soluble receptors (sTNFr2), HMGB1, TLR-4, CCL2 and IL-33. Certain receptors, cytokines, and chemokines are examples of neuroinflammation-related biomarkers that may be crucial for the early diagnosis of refractory epilepsy or may be connected to the control of epileptic seizures. Their value will be better defined by future studies
Soluble Receptor Isoform of IFN-Beta (sIFNAR2) in Multiple Sclerosis Patients and Their Association With the Clinical Response to IFN-Beta Treatment
Purpose: Interferon beta receptor 2 subunit (IFNAR2) can be produced as a transmembrane protein, but also as a soluble form (sIFNAR2) generated by alternative splicing or proteolytic cleavage, which has both agonist and antagonist activities for IFN-b. However, its role regarding the clinical response to IFN-b for relapsing-remitting multiple sclerosis (RRMS) is unknown. We aim to evaluate the in vitro short-term effects and after 6 and 12 months of IFN-b therapy on sIFNAR2 production and their association with the clinical response in MS patients. Methods: Ninety-four RRMS patients were included and evaluated at baseline, 6 and 12 months from treatment onset. A subset of 41 patients were classified as responders and non-responders to IFN-b therapy. sIFNAR2 serum levels were measured by ELISA. mRNA expression for IFNAR1, IFNAR2 splice variants, MxA and proteases were assessed by RT-PCR. The short-term effect was evaluated in PBMC from RRMS patients after IFN-b stimulation in vitro. Results: Protein and mRNA levels of sIFNAR2 increased after IFN-b treatment. According to the clinical response, only non-responders increased sIFNAR2 significantly at both protein and mRNA levels. sIFNAR2 gene expression correlated with the transmembrane isoform expression and was 2.3-fold higher. While MxA gene expression increased significantly after treatment, IFNAR1 and IFNAR2 only slightly increased. After short-term IFN-b in vitro induction of PBMC, 6/7 patients increased the sIFNAR2 expression.
Conclusions: IFN-b administration induces the production of sIFNAR2 in RRMS and higher levels might be associated to the reduction of therapeutic response. Thus, levels of sIFNAR2 could be monitored to optimize an effective response to IFN-b therapy.This research was funded by grants from the Instituto de Salud Carlos III and co-funded by European Regional Development Fund (ERDF), Technological Development Project in health DTS/1800045 to BO-M. BO-M holds a contract from Red Andaluza de Investigacion Clınica y Traslacional en Neurología (Neuro-reca) ́ (RIC-0111-2019). PA-G is supported by Promoción de Empleo Joven e Implantación de la Garantıa Juvenil 2018 (PEJ2018-002719- ́A). JR-B is supported by grantsfrom Red Temática de Investigación Cooperativa, Red Española de Esclerosis Multiple REEM (RD16/0015/0010). LL holds a Nicolás Monardes research contract (RC 002-2019) from the Andalusian Ministry of Health and Family. IB M holds a pFIS contract (FI19/00139)from the Spanish Science and Innovation Ministry.Ye
Neurological outcomes in immune checkpoint inhibitor-related neurotoxicity
International audienceAbstract While the spectrum of neurological immune checkpoint inhibitor-related adverse events is expanding, patients’ outcomes are not well documented. This study aimed to assess outcomes of neurological immune-related adverse events and to identify prognostic factors. All patients experiencing grade ≥2 neurological immune-related adverse events identified at two clinical networks (French Reference Center for Paraneoplastic Neurological Syndromes, Lyon; and OncoNeuroTox, Paris) over five years were included. Modified Rankin scores were assessed at onset, 6, 12, 18 months, and last visit. A multi-state Markov model was used to estimate the transition rates between minor disability (mRS <3), severe disability (mRS 3-5), and death (mRS 6), over the study period. The state-to-state transition rates were estimated using maximum likelihood and variables were introduced into the different transitions to study their effects. A total of 147 patients were included out of 205 patients with a suspicion of neurological immune-related adverse events. The median age was 65 years (range 20–87) and 87/147 patients (59.2%) were male. Neurological immune-related adverse events involved the peripheral nervous system in 87/147 patients (59.2%), the central nervous system in 51/147 (34.7%), and both systems in 9/147 (6.1%). Paraneoplastic-like syndromes were observed in 30/147 patients (20.4%). Cancers included lung cancers (36.1%), melanoma (30.6%), urological cancers (15.6%), and others (17.8%). Patients were treated with programmed cell death protein (ligan) 1 (PD(L)1) inhibitors (70.1%), CTLA4 inhibitors (3.4%) or both (25.9%). Severe disability was reported in 108/144 patients (75.0%) at onset and in 33/146 patients (22.6%) at last visit (median follow-up duration: 12 months, range 0.5–50); 48/147 (32.7%) patients died, from cancer progression (17/48, 35.4%), neurological toxicity (15/48, 31.2%), other causes (10/48, 20.8%) or unknown causes (6/48, 12.5%). The rate of transition from severe to minor disability independently increased with melanoma [compared to lung cancer, hazard ratio = 3.26, 95%CI (1.27; 8.41)] and myositis/neuromuscular junction disorders [hazard ratio = 8.26, 95%CI (2.90; 23.58)], and decreased with older age [hazard ratio = 0.68, 95%CI (0.47; 0.99)] and paraneoplastic-like syndromes [hazard ratio = 0.29, 95%CI (0.09; 0.98)]. In patients with neurological immune-related adverse events, myositis/neuromuscular junction disorders and melanoma increase the transition rate from severe to minor disability, while older age and paraneoplastic-like syndromes result in poorer neurological outcomes; future studies are needed to optimize the management of such patients
The cognitive and psychiatric subacute impairment in severe Covid-19.
Neurologic impairment persisting months after acute severe SARS-CoV-2 infection has been described because of several pathogenic mechanisms, including persistent systemic inflammation. The objective of this study is to analyze the selective involvement of the different cognitive domains and the existence of related biomarkers. Cross-sectional multicentric study of patients who survived severe infection with SARS-CoV-2 consecutively recruited between 90 and 120 days after hospital discharge. All patients underwent an exhaustive study of cognitive functions as well as plasma determination of pro-inflammatory, neurotrophic factors and light-chain neurofilaments. A principal component analysis extracted the main independent characteristics of the syndrome. 152 patients were recruited. The results of our study preferential involvement of episodic and working memory, executive functions, and attention and relatively less affectation of other cortical functions. In addition, anxiety and depression pictures are constant in our cohort. Several plasma chemokines concentrations were elevated compared with both, a non-SARS-Cov2 infected cohort of neurological outpatients or a control healthy general population. Severe Covid-19 patients can develop an amnesic and dysexecutive syndrome with neuropsychiatric manifestations. We do not know if the deficits detected can persist in the long term and if this can trigger or accelerate the onset of neurodegenerative diseases