60 research outputs found

    Sequential Activation of Human Oculomotor Centers During Planning of Visually-Guided Eye Movements: A Combined fMRI-MEG Study

    Get PDF
    We used magneto-encephalography (MEG) to measure visually evoked activity in healthy volunteers performing saccadic eye movements to visual targets. The neuromagnetic activity was analyzed from regions of cortical activation identified in separate functional magnetic resonance imaging (fMRI) studies. The latency of visual responses significantly increased from the Middle Temporal region (MT+) to the Intraparietal Sulcus (IPS) to the Frontal Eye Field (FEF), and their amplitude was greater in the hemisphere contralateral to the visual target. Trial-to-trial variability of oculomotor reaction times correlated with visual response latency across cortical areas. These results support a feedforward recruitment of oculomotor cortical centers by visual information, and a model in which behavioral variability depends on variability at different neural stages of processing

    Optimal tuning and neural emulation of MPC for power management in fuel cell hybrid electric vehicles

    Get PDF
    Power management in a fuel cell hybrid electric vehicle (FCHEV) consists of splitting efficiently the power generated by the battery and the fuel cell (FC), ensuring that the net delivered power meets the total power requested by the vehicle. In this work, we investigate the use of Model Predictive Control (MPC) to perform such power management task. The proposed MPC scheme features a novel approach for the optimal choice of the cost function weights, based on Particle Swarm Optimization (PSO), in order to achieve multiple control objectives, such as requested power tracking and minimum supplies consumption. Also, the MPC controller employs a neural data-driven approximation of the real plant as internal prediction model; this makes the controller employable in real-case scenarios, where only input-output plant measurements are available. We also present an alternative controller, based on feedforward neural networks (NNs), which emulates the whole MPC-based optimal control law. The NN-MPC controller is able to reliably reproduce the control action of the original controller, with a significantly lower computation time, making it suitable for real-time implementation on low-end control units

    The Effect of Anatomical Location of Lymph Node Metastases on Cancer Specific Survival in Patients with Clear Cell Renal Cell Carcinoma

    Get PDF
    Background: Positive nodal status (pN1) is an independent predictor of survival in renal cell carcinoma (RCC) patients. However, no study to date has tested whether the location of lymph node (LN) metastases does affect oncologic outcomes in a population submitted to radical nephrectomy (RN) and extended lymph node dissection (eLND). Objective: To describe nodal disease dissemination in clear cell RCC (ccRCC) patients and to assess the effect of the anatomical sites and the number of nodal areas affected on cancer specific mortality (CSM). Design, setting and partecipants: The study included 415 patients who underwent RN and eLND, defined as the removal of hilar, side-specific (pre/paraaortic or pre/paracaval) and interaortocaval LNs for ccRCC, at two institutions. Outcome measurement and statistical analysis: Descriptive statistics were used to depict nodal dissemination in pN1 patients, stratified according to nodal site and number of involved areas. Multivariable Cox regression analyses and Kaplan-Meier curves were used to explore the relationship between pN1 disease features and survival outcomes. Results and limitations: Median number of removed LN was 14 (IQR 9\u201319); 23% of patients were pN1. Among patients with one involved nodal site, 54 and 26% of patients were positive only in side-specific and interaortocaval station, respectively. The most frequent nodal site was the interaortocaval and side-specific one, for right and left ccRCC, respectively. Interaortocaval nodal positivity (HR 2.3, CI 95%: 1.3\u20133.9, p < 0.01) represented an independent predictor of CSM. Conclusions: When ccRCC patient harbour nodal disease, its spreading can occur at any nodal station without involving the others. The presence of interoartocaval positive nodes does affect oncologic outcomes. Patient summary: Lymph node invasion in patients with clear cell renal cell carcinoma is not following a fixed anatomical pattern. An extended lymph node dissection, during treatment for primary kidney tumour, would aid patient risk stratification and multimodality upfront treatment

    Electrophysiological efficacy of temperature-controlled bipolar radiofrequency†

    Get PDF
    OBJECTIVE Clinical success of atrial fibrillation (AF) ablation depends on persistent block of electrical conduction across the ablation lines. The fate of ablations performed with temperature-controlled bipolar radiofrequency (RF) is unknown. The purpose of this study was to validate the electrophysiological (EP) efficacy of these lesions, recording pulmonary vein isolation (PVI) after open chest ablation, in the human being. METHODS Ten consecutive mitral patients (mean age: 53 ± 12 years) with concomitant AF were treated with the Cobra Revolution (Estech, San Ramon, CA, USA) bipolar RF device were enrolled for EP assessment. During surgery, pairs of additional temporary wires were positioned on the right PVs (RPV) and on the roof of the left atrium (RLA), before ablation. Pacing thresholds (PTs) were assessed before, after a single encircling ablation and at chest's closure. EP study was repeated before discharge and at 3 weeks. RLA wires served as control. RESULTS Baseline PTs were 0.83 ± 0.81 mA (range 0.2-3 mA) from RPV and 1.13 ± 0.78 mA (range 0.3-3 mA) from RLA. PVI was reached in all patients acutely, and was maintained at 1 week. At 3 weeks, the PTs were 14.3 ± 4.3 mA from RPV (range 7-20 mA) and 3.1 ± 1.3 mA (range 1.5-7 mA) from RLA. All patients were discharged in sinus rhythm. CONCLUSIONS Cobra Revolution temperature-controlled bipolar RF provides complete PVI after a single ablation up to 1 week. This notwithstanding, only 30% of patients were completely isolated (exit block validation) at 3 week

    Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease

    Get PDF
    Glucocorticoids (GCs) are essential in regulating functions and homeostasis in many biological systems and are extensively used to treat a variety of conditions associated with immune/inflammatory processes. GCs are among the most powerful drugs for the treatment of autoimmune and inflammatory diseases, but their long-term usage is limited by severe adverse effects. For this reason, to envision new therapies devoid of typical GC side effects, research has focused on expanding the knowledge of cellular and molecular effects of GCs. GC-induced leucine zipper (GILZ) is a GC-target protein shown to mediate several actions of GCs, including inhibition of the NF-κB and MAPK pathways. GILZ expression is not restricted to immune cells, and it has been shown to play a regulatory role in many organs and tissues, including the cardiovascular system. Research on the role of GILZ on endothelial cells has demonstrated its ability to modulate the inflammatory cascade, resulting in a downregulation of cytokines, chemokines, and cellular adhesion molecules. GILZ also has the capacity to protect myocardial cells, as its deletion makes the heart, after a deleterious stimulus, more susceptible to apoptosis, immune cell infiltration, hypertrophy, and impaired function. Despite these advances, we have only just begun to appreciate the relevance of GILZ in cardiovascular homeostasis and dysfunction. This review summarizes the current understanding of the role of GILZ in modulating biological processes relevant to cardiovascular biology

    Depression, lifestyle factors and cognitive function in people living with HIV and comparable HIV-negative controls

    Get PDF
    Objectives We investigated whether differences in cognitive performance between people living with HIV (PLWH) and comparable HIV‐negative people were mediated or moderated by depressive symptoms and lifestyle factors. Methods A cross‐sectional study of 637 ‘older’ PLWH aged ≥ 50 years, 340 ‘younger’ PLWH aged < 50 years and 276 demographically matched HIV‐negative controls aged ≥ 50 years enrolled in the Pharmacokinetic and Clinical Observations in People over Fifty (POPPY) study was performed. Cognitive function was assessed using a computerized battery (CogState). Scores were standardized into Z‐scores [mean = 0; standard deviation (SD) = 1] and averaged to obtain a global Z‐score. Depressive symptoms were evaluated via the Patient Health Questionnaire (PHQ‐9). Differences between the three groups and the effects of depression, sociodemographic factors and lifestyle factors on cognitive performance were evaluated using median regression. All analyses accounted for age, gender, ethnicity and level of education. Results After adjustment for sociodemographic factors, older and younger PLWH had poorer overall cognitive scores than older HIV‐negative controls (P < 0.001 and P = 0.006, respectively). Moderate or severe depressive symptoms were more prevalent in both older (27%; P < 0.001) and younger (21%; P < 0.001) PLWH compared with controls (8%). Depressive symptoms (P < 0.001) and use of hashish (P = 0.01) were associated with lower cognitive function; alcohol consumption (P = 0.02) was associated with better cognitive scores. After further adjustment for these factors, the difference between older PLWH and HIV‐negative controls was no longer significant (P = 0.08), while that between younger PLWH and older HIV‐negative controls remained significant (P = 0.01). Conclusions Poorer cognitive performances in PLWH compared with HIV‐negative individuals were, in part, mediated by the greater prevalence of depressive symptoms and recreational drug use reported by PLWH

    Application of X-Band Wave Radar for Coastal Dynamic Analysis: Case Test of Bagnara Calabra (South Tyrrhenian Sea, Italy)

    Get PDF
    Sea state knowledge has a key role in evaluation of coastal erosion, the assessment of vulnerability and potential in coastal zone utilization, and development of numerical models to predict its evolution. X-band radar measurements were conducted to observe the spatial and temporal variation of the sea-state parameters along a 3 km long sandy-gravelly pocket beaches forming a littoral cell on Bagnara Calabra. We produced a sequence of 1000 images of the sea state extending offshore up to 1 mile. The survey has allowed monitoring the coastline, the directional wave spectra, the sea surface current fields, and the significant wave heights and detecting strong rip currents which cause scours around the open inlets and affect the stability of the submerged reef-type breakwaters. The possibility to validate the data acquired with other datasets (e.g., LaMMA Consortium) demonstrates the potential of the X-band radar technology as a monitoring tool to advance the understanding of the linkages between sea conditions, nearshore sediment dynamics, and coastal change. This work proves the possibility to obtain relevant information (e.g., wave number, period, and direction) for evaluation of local erosion phenomena and of morphological changes in the nearshore and surf zone

    COVID-19 and atrial fibrillation: Intercepting lines

    Get PDF
    Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1–7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized
    corecore