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Optimal tuning and neural emulation of MPC for
power management in fuel cell hybrid electric vehicles

L. Calogero1, M. Pagone1, F. Cianflone2, E. Gandino2, C. Karam2, and A. Rizzo*,1

Introduction

Power management in a fuel cell hybrid electric vehicle
(FCHEV) consists of splitting efficiently the power gen-

erated by the battery and the fuel cell (FC), ensuring that
the net delivered power meets the total power requested by
the vehicle. In this work, we investigate the use of Model
Predictive Control (MPC) to perform such power manage-
ment task. The proposed MPC scheme features a novel ap-
proach for the optimal choice of the cost function weights,
based on Particle Swarm Optimization (PSO), in order to
achieve multiple control objectives, such as requested power
tracking and minimum supplies consumption. Also, the MPC
controller employs a neural data-driven approximation of the
real plant as internal prediction model; this makes the con-
troller employable in real-case scenarios, where only input-
output plant measurements are available. We also present an
alternative controller, based on feedforward neural networks
(NNs), which emulates the whole MPC-based optimal control
law. The NN-MPC controller is able to reliably reproduce the
control action of the original controller, with a significantly
lower computation time, making it suitable for real-time im-
plementation on low-end control units.

1. Power supplies model

The FCHEV power supplies (i.e., battery and FC) are the
plant under control (Fig. 1). The plant model takes as inputs
the battery/FC power (𝑃𝑏, 𝑃𝑓𝑐) and provides as output the
present battery state of charge (𝑆𝑂𝐶 ≡ 𝜉), the remaining
hydrogen mass (𝑚ℎ), and the net delivered power (𝑃𝑡𝑜𝑡). The
model is discretized with time step 𝑇𝑠, i.e.,

𝒙 = [𝜉, 𝑚ℎ]⊤ , 𝒖 = [𝑃𝑏, 𝑃𝑓𝑐]⊤ , 𝒚 = [𝜉, 𝑚ℎ, 𝑃𝑡𝑜𝑡]
⊤ (1)

⎧{
⎨{⎩

𝒙𝑘+1 = [ 𝜉𝑘+1
𝑚ℎ,𝑘+1

] = [𝜉𝑘 + 𝑇𝑠 ⋅ 𝑓1(𝜉𝑘, 𝑃𝑏,𝑘)
𝑚ℎ,𝑘 + 𝑇𝑠 ⋅ 𝑓2(𝑃𝑓𝑐,𝑘)]

𝒚𝑘 = [𝜉𝑘, 𝑚ℎ,𝑘, 𝜂𝑏𝑃𝑏,𝑘 + 𝜂𝑓𝑐𝑃𝑓𝑐,𝑘]⊤,
(2)

with 𝑘 = 𝑡/𝑇𝑠, 𝑡 = 𝑛𝑇𝑠, 𝑛 ∈ N≥0.

2. Data-driven MPC controller

The MPC prediction model approximates the plant model
(2) by means of two feedforward neural networks (FNNs) for
the plant state and output equations, respectively. The NNs
are trained through plant input-output data. The prediction
model is discretized with time step 𝑇 ′

𝑠 = 𝑚𝑇𝑠, 𝑚 ∈ N≥1 (i.e.,
the control time step), and step-by-step linearized at each
control time instant ℎ = 𝑡/𝑇 ′

𝑠 , 𝑡 = 𝑛𝑇 ′
𝑠 , 𝑛 ∈ N≥0, obtaining

affine time-variant prediction model constraints in the MPC
optimal control problem.
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Figure 1. FCHEV power management system.

The MPC controller solves, at each control time instant ℎ,
the following QP finite-horizon optimal control problem

min
�̂�,�̂�,�̂�

𝑁𝑝−1

∑
𝑖=0

(‖ ̂𝒚𝑖|ℎ − 𝒚𝑟,ℎ‖2
𝑸 + ‖�̂�𝑖|ℎ‖2

𝑹) +

𝑁𝑝−1

∑
𝑖=1

(‖ ̂𝒚𝑖|ℎ − ̂𝒚𝑖−1|ℎ‖2
𝑸Δ

+ ‖�̂�𝑖|ℎ − �̂�𝑖−1|ℎ‖2
𝑹Δ

) +

‖ ̂𝒚𝑁𝑝|ℎ − 𝒚𝑟,ℎ‖2
𝑷 + 𝜌|𝜺|2 (3a)

s.t.
�̂�𝑖+1|ℎ = 𝑨ℎ�̂�𝑖|ℎ + 𝑩ℎ�̂�𝑖|ℎ + 𝒃ℎ, 𝑖 = 0, 1, … , 𝑁𝑝 (3b)

̂𝒚𝑖|ℎ = 𝑪ℎ�̂�𝑖|ℎ + 𝑫ℎ�̂�𝑖|ℎ + 𝒅ℎ, 𝑖 = 0, 1, … , 𝑁𝑝 (3c)
�̂�0|ℎ = 𝒙ℎ (3d)
�̂�𝑖|ℎ = �̂�𝑁𝑐−1|ℎ, 𝑖 = 𝑁𝑐, … , 𝑁𝑝 (3e)
𝒚ℎ − 𝜺 ≤ ̂𝒚𝑖|ℎ ≤ 𝒚ℎ + 𝜺, 𝑖 = 0, 1, … , 𝑁𝑝 (3f)

𝒖ℎ ≤ �̂�𝑖|ℎ ≤ 𝒖ℎ, 𝑖 = 0, 1, … , 𝑁𝑐 − 1 (3g)
𝒖Δ,ℎ ≤ 1

𝑇 ′𝑠
(�̂�𝑖|ℎ − �̂�𝑖−1|ℎ) ≤ 𝒖Δ,ℎ, 𝑖 = 1, … , 𝑁𝑐 − 1 (3h)

𝜺 ≥ 𝟎 (3i)
where: 𝑁𝑝, 𝑁𝑐 are the prediction and control horizons; (3a)

is the cost function; (3b)-(3d) is the affine time-variant pre-
diction model; (3f)-(3h) are bound constraints on the output,
input, and input rate; (3i) is the slack variable constraint.

The cost function (3a) features a reference tracking term
for the output, penalization terms for the input, output rate,
input rate, and slack variable, and a terminal cost. The termi-
nal cost enforces closed-loop asymptotic stability for suitable
values of 𝑁𝑝 and 𝑷 [1]. In presence of a bounded error on
the optimal control input, it is ensured only finite-time con-
vergence [1].

The control policy is a 1-step receding horizon, applied to
the plant (2) over a control time step.

3. MPC controller tuning

The tuning of the MPC weights 𝒘 (i.e., the elements of the
diagonal weighting matrices 𝑸, 𝑹, 𝑸Δ, 𝑹Δ, 𝑷 in (3a)) is
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formulated as a multi-objective optimization problem, mini-
mizing an objective function 𝑓 that is the weighted sum of
several components 𝑐𝑖, i.e.,

min
𝒘∈Ω𝑤

𝑓(𝒘), 𝑓(𝒘) =
𝑛𝑐

∑
𝑖=1

𝛼𝑖 ⋅ 𝑐𝑖(𝒘). (4)

Each component 𝑐𝑖 quantifies a different aspect of control
performance. The weights 𝜶 = [𝛼𝑖]𝑛𝑐

𝑖=1 set the priority of
each term. For our purposes, the objective function has three
components, associated with: 1) reference power tracking, 2)
consumption of the battery, 3) consumption of hydrogen.

To solve the tuning optimization problem (4), Particle
Swarm Optimization (PSO) is employed [2].

4. Neural network emulation of the MPC controller

The tuned MPC controller (3)-(4) is emulated by means of a
FNN, taking as input the present state 𝒙ℎ and reference out-
put 𝒚𝑟,ℎ and providing as output the optimal control input 𝒖ℎ
[3]. The universal approximation theorem of FNNs ensures
boundedness of the error of the NN output [4], meaning that
the NN-MPC controller grants finite-time convergence [1].

5. Results and simulations

The MPC and NN-MPC controllers are tested to control the
plant model (2) with a predefined vehicle power request 𝑃𝑡𝑜𝑡,𝑟
(Fig. 1, 2). The plant and the MPC prediction model are
perturbed with measurement noises, to empirically assess the
controller robustness.

Simulations evaluate the following aspects:
• MPC tuning performance with multiple control objectives;
• MPC/NN-MPC controller performance;
• NN-MPC controller emulation capability of the original
MPC controller;

• MPC and NN-MPC execution time.

5.1. MPC controller tuning
Four control objectives are considered to test the MPC tuning
capabilities:
1) Lowest tracking error;
2) Low tracking error, low cumulative supplies consumption;
3) Low tracking error, low battery consumption;
4) Low tracking error, low hydrogen consumption.

Setting up accordingly the weights 𝜶 of the tuning ob-
jective function (4), optimal MPC weights 𝒘 are obtained
through PSO. Simulating the tuned MPC controller, the ob-
tained control performance, for each control objective, is re-
ported in Table 1.

Table 1. MPC tuning performance.

Control
objective

Battery
cons. H2 cons. Cumula-

tive cons.
Track.

accuracy

Max
track.
error

1 80.17% 54.46% 67.31% 100.00% 2.12%
2 68.44% 51.28% 59.86% 100.00% 9.88%
3 49.70% 79.10% 64.40% 99.96% 10.11%
4 94.63% 26.41% 60.52% 100.00% 6.57%

The tuning algorithm has achieved all the given control
objectives, in terms of tracking and supplies consumption,
outperforming manual tuning, even in presence of uncertain-
ties in the identified MPC prediction model (comparisons are
here omitted due to space constraints).
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Figure 2. MPC/NN-MPC controllers performance.

5.2. MPC/NN-MPC controllers
Considering control objective 2, we simulate the tuned MPC
controller and the corresponding NN-MPC controller.

From Fig. 2, we observe that both controllers achieve ex-
cellent tracking accuracy and minimize the cumulative sup-
plies consumption. Also, from Fig. 2, we notice that MPC
and NN-MPC achieve comparable performance, proving that
NN-MPC is reliable and able to accurately emulate the MPC
controller.

5.3. Execution time
The maximum execution time of 1 control step has been mea-
sured for both controllers, obtaining 11.44 ms for MPC and
0.096 ms for NN-MPC. NN-MPC outperforms MPC in terms
of speed, resulting suitable for automotive real-time imple-
mentation, even on control units with low computational re-
sources.
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