20 research outputs found

    Sicilia—silicon carbide detectors for intense luminosity investigations and applications

    Get PDF
    Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance

    Lights and (some) shadows in the comparison among experimental data of heavy ion collisionat Fermi energies and the dynamical model AMD

    No full text
    The simulation of heavy ion collisions in the Fermi energy region is a challenge for the theoretical models; in particular it is difficult to obtain a coherent description in all the impact parameter range and to reproduce all the experimental observables. In this contribution we will show the very good job done by the dynamical model AMD [1] followed by the statistical code GEMINI [2, 3] as an afterburner. The model is able to reproduce the main characteristics of peripheral and semiperipheral collisions, although some discrepancies still persist

    Lights and (some) shadows in the comparison among experimental data of heavy ion collisionat Fermi energies and the dynamical model AMD

    Get PDF
    The simulation of heavy ion collisions in the Fermi energy region is a challenge for the theoretical models; in particular it is difficult to obtain a coherent description in all the impact parameter range and to reproduce all the experimental observables. In this contribution we will show the very good job done by the dynamical model AMD [1] followed by the statistical code GEMINI [2, 3] as an afterburner. The model is able to reproduce the main characteristics of peripheral and semiperipheral collisions, although some discrepancies still persist

    Evidence of a low prevalence of a ras mutations in a large medullary thyroid cancer series.

    No full text
    Background: Approximately 60% of sporadic medullary thyroid carcinomas (sMTC) remain orphan of a recognized genetic cause. Recently, a high percentage of RAS point mutations have been described in RET-negative sMTC. The aim of this study was to assess the prevalence of RAS point mutations in a large series of MTC collected in four Italian centers. Methods: For this purpose, we studied codons 12, 13, and 61 of H-, K-, and N-RAS genes in 188 MTC samples, either hereditary or sporadic, by direct sequencing. Correlations between the RAS mutational status and the clinical-pathological features of MTC patients as well as a meta-analysis of all published data were performed. Results: The prevalence of RAS mutations in the present series of MTC was 10.1%, and 17.6% when considering only RET-negative cases. RAS mutations were found in MTC tumoral tissue, but not in peripheral blood indicating their somatic origin. A novel mutation in codon 72 (M72I) was found, but with a low or null transforming potential. No association was found between the presence of RAS mutations and the clinical-pathological features of the patients. Although not statistically significant, a positive association between the presence of RAS mutations and a better outcome was observed. The meta-analysis of all published studies confirmed a prevalence of 8.8% for RAS mutations in MTC. Conclusions: The prevalence of RAS mutations in our MTC series was relatively low and consistent with the meta-analysis data. Only somatic RAS mutations were found and only in RET-negative sMTC. Likewise, MTCs that harbor a RAS mutation identify a subgroup of tumors with less aggressive behavior. To our knowledge, this is the largest series of MTCs studied for the presence of mutations in RAS genes and the first meta-analysis on this specific topic

    Isoscaling in Dilute Warm Nuclear Systems

    No full text
    International audienceHeavy-ion collisions are a good tool to explore hot nuclear matter below saturation density. It has been established that if a nuclear system reaches the thermal and chemical equilibrium, this leads to scaling properties in the isotope production when comparing two systems which differ in proton fraction. This article presents a study of the isoscaling properties of an expanding gas source exploring different thermodynamic states (density, temperature, proton fraction). This experimental work highlights the existence of an isoscaling relationship for hydrogen and 3He, 4He helium isotopes which agrees with the hypothesis of thermal and chemical equilibrium. Moreover, this work reveals the limitations of isoscaling when the two systems differ slightly in total mass and temperature. Also, a discrepancy has been observed for the 6He isotope, which could be explained by finite size effects or by the specific halo nature of this cluster

    Isoscaling in Dilute Warm Nuclear Systems

    No full text
    International audienceHeavy-ion collisions are a good tool to explore hot nuclear matter below saturation density. It has been established that if a nuclear system reaches the thermal and chemical equilibrium, this leads to scaling properties in the isotope production when comparing two systems which differ in proton fraction. This article presents a study of the isoscaling properties of an expanding gas source exploring different thermodynamic states (density, temperature, proton fraction). This experimental work highlights the existence of an isoscaling relationship for hydrogen and 3He, 4He helium isotopes which agrees with the hypothesis of thermal and chemical equilibrium. Moreover, this work reveals the limitations of isoscaling when the two systems differ slightly in total mass and temperature. Also, a discrepancy has been observed for the 6He isotope, which could be explained by finite size effects or by the specific halo nature of this cluster

    Isoscaling in Dilute Warm Nuclear Systems

    No full text
    International audienceHeavy-ion collisions are a good tool to explore hot nuclear matter below saturation density. It has been established that if a nuclear system reaches the thermal and chemical equilibrium, this leads to scaling properties in the isotope production when comparing two systems which differ in proton fraction. This article presents a study of the isoscaling properties of an expanding gas source exploring different thermodynamic states (density, temperature, proton fraction). This experimental work highlights the existence of an isoscaling relationship for hydrogen and 3He, 4He helium isotopes which agrees with the hypothesis of thermal and chemical equilibrium. Moreover, this work reveals the limitations of isoscaling when the two systems differ slightly in total mass and temperature. Also, a discrepancy has been observed for the 6He isotope, which could be explained by finite size effects or by the specific halo nature of this cluster

    Evaluation of the Molecular Landscape in PD-L1 Positive Metastatic NSCLC: Data from Campania, Italy

    No full text
    Background: Immune-checkpoint inhibitors (ICIs) have increased and improved the treatment options for patients with non-oncogene-addicted advanced stage non-small cell lung cancer (NSCLC). However, the role of ICIs in oncogene-addicted advanced stage NSCLC patients is still debated. In this study, in an attempt to fill in the informational gap on the effect of ICIs on other driver mutations, we set out to provide a molecular landscape of clinically relevant oncogenic drivers in programmed death-ligand 1 (PD-L1) positive NSCLC patients. Methods: We retrospectively reviewed data on 167 advanced stage NSCLC PD-L1 positive patients (≥1%) who were referred to our clinic for molecular evaluation of five driver oncogenes, namely, EGFR, KRAS, BRAF, ALK and ROS1. Results: Interestingly, n = 93 (55.7%) patients showed at least one genomic alteration within the tested genes. Furthermore, analyzing a subset of patients with PD-L1 tumor proportion score (TPS) ≥ 50% and concomitant gene alterations (n = 8), we found that n = 3 (37.5%) of these patients feature clinical benefit with ICIs administration, despite the presence of a concomitant KRAS gene alteration. Conclusions: In this study, we provide a molecular landscape of clinically relevant biomarkers in NSCLC PD-L1 positive patients, along with data evidencing the clinical benefit of ICIs in patient NSCLC PD-L1 positive alterations
    corecore